Tìm một số có 2 chữ số biét rằng nếu đem số đó chia cho tổng các chữ số của nó thì được thương là 4 dư 3. Còn nếu đem số đó chia cho tích các chữ số của nó thì được thương là 3 dư 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức AM - GM ta có :
\(P\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1+x^2y^2}{xy}}=2\sqrt{\frac{1}{xy}+xy}\)
\(2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\ge2\sqrt{\sqrt{\frac{1}{16xy}.xy}+\frac{15}{4\left(x+y\right)^2}}=\sqrt{17}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Bài 1:
Ta có:
[tex]\left\{\begin{matrix} xy^{2}+x+y+\frac{1}{y}=4 & \\ y^{2}+x+\frac{1}{y}=3 & \end{matrix}\right.(y\neq 0)[/tex]
Từ phương trình suy ra:
[tex]\left\{\begin{matrix} y(xy+1)+\frac{xy+1}{y}=4 & \\ y^{2}+\frac{xy+1}{y}=3 & \end{matrix}\right.[/tex]
Đặt [tex]xy+1=a,y=b(b\neq 0)[/tex] ta có:
[tex]\left\{\begin{matrix} b^{2}+\frac{a}{b}=3 & \\ ab+\frac{a}{b}=4 & \end{matrix}\right.[/tex]
[tex]\Rightarrow \left\{\begin{matrix} 3b-b^{3}=a & \\ ab^{2}+a=4b & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3b-b^{3}=a & \\ b\left ( 2b^{2}-b^{4}-1 \right )=0 & \end{matrix}\right.[/tex]
[tex]\Leftrightarrow \left\{\begin{matrix} b=0 & \\ a=0 & \end{matrix}\right.[/tex](Loại) hoặc [tex]\left\{\begin{matrix} b=1 & \\ a=2 & \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} b=-1 & \\ a=-2 & \end{matrix}\right.[/tex]
TH1: [tex]\left\{\begin{matrix} b=1 & \\ a=2 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1 & \\ y=1 & \end{matrix}\right.[/tex]
TH2: [tex]\left\{\begin{matrix} b=-1 & \\ a=-2 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3 & \\ y=-1 & \end{matrix}\right.[/tex]
Vậy hệ phương trình có hai nghiệm: [tex]\left\{\begin{matrix} x=1 & \\ y=1 & \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} x=3 & \\ y=-1 & \end{matrix}\right.[/tex]
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{\left(a+c\right)\left(b+c\right)}+\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2\)
\(\le\left(a+c+a-c\right)\left(b+c+b-c\right)\)
\(=2a\cdot2b=4ab=VP^2\)
\(\Rightarrow VT\le VP\) *ĐPCM*
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ac=0\)
Đặt \(F=a^2+b^2+c^2\)
Từ \(a+b+c=1\Rightarrow\left(a+b+c\right)^2=1\)
\(\Rightarrow F+2\left(ab+bc+ac\right)=1\)
\(\Rightarrow F+2\cdot0=1\Rightarrow F=1\)
gọi số cần tìm là ab ( a khác 0 )
Ta có :
ab : ( a+b ) = 4 ( dư 3 )
a10 + b = ( a+b ).4 + 3
a10 + b = a4 +b4 +3
( 10a - 4a ) = ( b4 - b ) + 3
6a=3b+3
6a-3b = 3
=> ( 6a-3b ) \(⋮\)3 mà 3b \(⋮\)3 nên 6a \(⋮\)3 => b \(⋮\)3; a\(⋮\)3
=> a \(\in\){ 3;6;9 }
Nếu a = 3 => b=5 ta có ab = 35 ( thỏa mãn )
Nếu a = 6 => b=11 ( vô lí )
Nếu a = 9 => b=18 (vô lí )
Vậy số cần tìm là 35
Tham khảo tại link này;https//olm//thanhvienhaylexx