Hoa Quỳnh là loài hoa nở về .......................
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với các số thực dương a,b,c áp dụng BDT Cauchi ta có:
\(\frac{a^4b}{a^2+1}=a^2b-\frac{a^2b}{a^2+1}\geq a^2b-\frac{a^2b}{2a}=a^2b-\frac{ab}{2}\)
Chứng minh tương tự ta cũng có:
\(\frac{b^4c}{b^2+1}\ge b^2c-\frac{bc}{2},\frac{c^4a}{c^2+1}\ge c^2a-\frac{ca}{2}\)
ta suy ra:
\(\frac{a^4b}{a^2+1}+\frac{b^4c}{b^2+1}+\frac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\frac{1}{2}\left(ab+bc+ca\right)\)
áp dụng bdt Cauchy lần nữa, ta có:
\(a^2b+a^2b+b^2c\ge3ab\sqrt[3]{abc}=3ab\)
tương tự ta có:
\(b^2c+b^2c+c^2a\ge3bc\\ c^2a+c^2a+a^2b\ge3ca\)
Vậy:
\(\frac{a^4b}{a^2+1}+\frac{b^4c}{b^2+1}+\frac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\frac{1}{2}\left(ab+bc+ca\right)\ge\frac{1}{2}\left(ab+bc+ca\right)\\ \ge\frac{3}{2}\sqrt[3]{a^2b^2c^2}=\frac{3}{2}\)
Dấu bằng xảy ra khi\(a=b=c=1\)
ĐK: \(x\ge-1\)
Ta có: \(2x^2-6x+10-5\left(x-2\right)\sqrt{x+1}=0\)
\(\Leftrightarrow2\left(x^2-4x+4\right)+2\left(x+1\right)-5\left(x-2\right)\sqrt{x+1}=0\)
\(\Leftrightarrow2\left(x-2\right)^2+2\left(x+1\right)-5\left(x-2\right)\sqrt{x+1}=0\)
\(\Leftrightarrow\left[2\left(x-2\right)^2-4\left(x-2\right)\sqrt{x+1}\right]-\left[\left(x-2\right)\sqrt{x+1}-2\left(x+1\right)\right]=0\)
\(\Leftrightarrow2\left(x-2\right)\left(x-2-2\sqrt{x+1}\right)-\left(x-2-2\sqrt{x+1}\right)\sqrt{x+1}=0\)
\(\Leftrightarrow\left(2x-4-\sqrt{x+1}\right)\left(x-2-2\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-4=\sqrt{x+1}\\x-2=2\sqrt{x+1}\end{cases}}\left(x\ge2\right)\)
\(\Leftrightarrow\orbr{\begin{cases}4x^2-16x+16=x+1\\x^2-4x+4=4x+4\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x^2-17x+15=0\\x^2-8x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)\left(4x-5\right)=0\\x\left(x-8\right)=0\end{cases}}\Rightarrow x\in\left\{0;\frac{5}{4};3;8\right\}\)
Mà \(x\ge2\) => \(\orbr{\begin{cases}x=3\\x=8\end{cases}\left(tm\right)}\)
mình hoàn thiện nốt bài bạn ở trên nhé
Do \(x^2+xu+u^2\)là một bình phương thiếu nên \(x^2+xu+u^2\ge0\Rightarrow x^2+xu+u^2+2\ge2>0\text{}\)
vậy hệ phương trình ban đầu \(\Leftrightarrow x=u\) hay \(x=\sqrt[3]{2x+1}\Leftrightarrow x^3=2x+1\Leftrightarrow\left(x+1\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1\pm\sqrt{5}}{2}\end{cases}}\)vậy pt có ba nghiệm
Hoa Quỳnh là loài hoa nở về đêm
kick mình nha, chúc bạn học tốt