Số \(5^n+7^n\)chia cho 100 được bao nhiêu giá trị khác nhau về số dư khi n là 1 số không âm.
Giúp mình với, mình cần gấp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Ta có : \(B=-\frac{1}{3^0}-\frac{1}{3^1}-\frac{1}{3^2}-...-\frac{1}{3^{100}}\)
\(\Rightarrow\text{ }B=-\frac{1}{3^0}-\left(\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(B=-1-\left(\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
Đặt \(C=\frac{1}{3^1}+\frac{1}{3^2}+..+\frac{1}{3^{100}}\)
\(\Rightarrow\text{ }3C=1+\frac{1}{3^1}+...+\frac{1}{3^{99}}\)
\(\Rightarrow\text{ }3C-C=2C=1-\frac{1}{3^{100}}\)
\(C=\frac{1-\frac{1}{3^{100}}}{2}=\frac{1}{2}-\frac{1}{2\cdot3^{100}}\)
Thay vào biểu thức B ta được :
\(B=-1-\frac{1}{2}-\frac{1}{2\cdot3^{100}}\)
\(B=-\frac{3}{2}-\frac{1}{2\cdot3^{100}}\)
\(B=\frac{\left(-3\right)^{101}}{2\cdot3^{100}}-\frac{1}{2\cdot3^{100}}=\frac{\left(-3\right)^{101}-1}{2\cdot3^{100}}\)
Bài giải
Ta có : \(B=-\frac{1}{3^0}-\frac{1}{3^1}-\frac{1}{3^2}-...-\frac{1}{3^{100}}\)
\(\Rightarrow\text{ }B=-\frac{1}{3^0}-\left(\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(B=-1-\left(\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
Đặt \(C=\frac{1}{3^1}+\frac{1}{3^2}+..+\frac{1}{3^{100}}\)
\(\Rightarrow\text{ }3C=1+\frac{1}{3^1}+...+\frac{1}{3^{99}}\)
\(\Rightarrow\text{ }3C-C=2C=1-\frac{1}{3^{100}}\)
\(C=\frac{1-\frac{1}{3^{100}}}{2}=\frac{1}{2}-\frac{1}{2\cdot3^{100}}\)
Thay vào biểu thức B ta được :
\(B=-1-\frac{1}{2}-\frac{1}{2\cdot3^{100}}\)
\(B=-\frac{3}{2}-\frac{1}{2\cdot3^{100}}\)
\(B=\frac{\left(-3\right)^{101}}{2\cdot3^{100}}-\frac{1}{2\cdot3^{100}}=\frac{\left(-3\right)^{101}-1}{2\cdot3^{100}}\)
Bổ sung đề:
Cho: \(\frac{a}{b}=\frac{c}{d}\). C/m \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
Đặt: \(\frac{a}{b}=\frac{c}{d}=k\)\(\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó: \(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{k^2.\left(bd\right)}{bd}=k^2\) \(\left(1\right)\)
Và: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)\(\left(đpcm\right)\)
\(A=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^4}=\frac{2^{30}+2^{20}}{2^{12}+2^8}=\frac{2^{20}\left(2^{10}+1\right)}{2^8\left(2^4+1\right)}=\frac{2^{12}\left(2^{10}+1\right)}{2^4+1}\)