Cho hai đường tròn (O) và (O') cắt nhau ở A và B, trong đó tiếp tuyến chung CD song song với cát tuyến chung EBF, C và E thuộc (O), D và F thuộc (O'), B nằm giữa E và F. Gọi M, N theo thứ tự là giao điểm của DA, CA với EF. Gọi I là giao điểm của EC và FD. Chứng minh rằng:
a) \triangle ICD= \triangle BCD
b) IB là đường trung trực của MN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Another way: \(a+b+c\ge\sqrt{3\left(ab+bc+ac\right)}=3\)
Ta có BĐT phụ \(\frac{a^2}{\sqrt{a^3+8}}\ge\frac{11a}{18}-\frac{5}{18}\)
\(\Leftrightarrow\frac{\frac{\left(a-1\right)^2\left(121a^3-192a^2-480a+200\right)}{-324a^3-2592}}{\frac{a^2}{\sqrt{a^3+8}}+\frac{11a}{18}-\frac{5}{18}}\ge0\forall0< a\le1\)
TƯơng tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b^2}{\sqrt{b^3+8}}\ge\frac{11b}{18}-\frac{5}{18};\frac{c^2}{\sqrt{c^3+8}}\ge\frac{11c}{18}-\frac{5}{18}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\frac{11\left(a+b+c\right)}{18}-\frac{5}{18}\cdot3\ge1\)
"=" khi \(a=b=c=1\)

hệ pt <=> 4x + 8y = 8 ; 5x-8y = 3
<=> 4x+8y+5x-8y = 11
<=> 9x = 11
<=> x=11/9
<=> y = 7/18
Vậy ............
Tk mk nha

A=x^3 +y^3 +z^3+ 2(x/y+z +y/z+x +z/x+y) \(\ge x^3+y^3+z^3+2.\frac{3}{2}\) (bạn vào tìm BĐT nesbit là sẽ cm cái đằng sau >= 3/2)
Áp dụng cô si \(x^3+y^3+z^3\ge3xyz=3\)
===> A\(\ge3+3=6\) khi x=y=z=1