2 xe cùng khởi hành 1 lúc từ 2 tỉnh AB cách nhay 60km nếu đi ngược chiều nhau thì gặp nhau sau 1 giờ nếu đi cùng chiều thì xe đi nhanh sẽ đuổi kịp xe kia sau 3 giờ tính vẫn tốc mỗi xe ???
làm giúp mk vs ạ !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}2x=\sqrt{y+3}\left(1\right)\\2y=\sqrt{z+3}\left(2\right)\\2z=\sqrt{x+3}\left(3\right)\end{cases}}\)(*)
Do \(\hept{\begin{cases}\sqrt{y+3}\ge0\\\sqrt{z+3}\ge0\\\sqrt{x+3}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge0\\2y\ge0\\2z\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}}\)
Do 2 vế của các phương trình (1)(2)(3) không âm, bình phương 2 vế của mỗi phương trình ta được hệ phương trình:
\(\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=z+3\\\left(2z\right)^2=x+3\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x\right)^2+\left(2y\right)^2+\left(2z\right)^2=x+y+z+9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x\right)^2+\left(2y\right)^2+\left(2z\right)^2-x-y-z-9=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left[\left(2x\right)^2-2.2x.\frac{1}{4}+\frac{1}{16}\right]+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\frac{1}{16}\right]+\left[\left(2z\right)^2-2.2z.\frac{1}{4}+\frac{1}{16}\right]+\frac{141}{16}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x+\frac{1}{4}\right)^2+\left(2y+\frac{1}{4}\right)^2+\left(2z+\frac{1}{4}\right)^2+\frac{141}{16}=0\left(4\right)\end{cases}}\)
Do \(\left(2x+\frac{1}{4}\right)^2+\left(2y+\frac{1}{4}\right)^2+\left(2z+\frac{1}{4}\right)^2+\frac{141}{16}>0\)
nên phương trình (4) vô nghiệm
=> Phương trình (*) vô nghiệm
Áp dụng BĐT AM-GM:
\(\frac{x+1}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{y^2+1}\ge x+1-\frac{y\left(x+1\right)}{2}=x+1-\frac{xy+y}{2}\)
TƯơng tự cho 2 BĐT còn lại rồi coojgn theo vế:
\(Q\ge x+y+z+3-\frac{xy+yz+xz+x+y+z}{2}\)
\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}\ge3\)
"=" <=> x=y=z=1
đặt \(\sqrt{x+2}=a;\sqrt{y}=b\left(a,b\ge0\right)\)
Ta có Pt <=>\(2\sqrt{a^2+3b^2}-3b=a\Leftrightarrow2\sqrt{a^2+3b^2}=a+3b\)
<=>\(4\left(a^2+3b^2\right)=a^2+9b^2+6ab\Leftrightarrow3a^2+12b^2-a^2-9b^2-6ab=0\)
<=>\(3\left(a^2-2ab+b^2\right)=0\Leftrightarrow3\left(a-b\right)^2=0\Leftrightarrow a=b\Leftrightarrow\sqrt{x+2}=\sqrt{y}\)
Thay vào PT(2), ta có
\(x^2-3x-4\sqrt{x+2}+10=0\Leftrightarrow x^2-4x+4+x+2-4\sqrt{x+2}+4=0\)
<=>\(\left(x-2\right)^2+\left(\sqrt{x+2}-2\right)^2=0\Leftrightarrow\hept{\begin{cases}x=2\\\sqrt{x+2}=2\end{cases}\Leftrightarrow x=2}\)
Vậy ...
^_^