trong mặt phẳng oxy ,cho tam giác ABC biết A(2;-1) và I(1;0) là trung điểm BC .Tìm tọa độ trọng tâm tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
A B C O H K J
ta có \(\overrightarrow{AO}.\left(\overrightarrow{BO}+\overrightarrow{AC}-2\overrightarrow{BC}\right)=\overrightarrow{AO}.\overrightarrow{BO}+\overrightarrow{AO}.\overrightarrow{AC}-\overrightarrow{AO}.2\overrightarrow{BC}\)
\(=\overrightarrow{AO}.\overrightarrow{BO}+\overrightarrow{AO}.\overrightarrow{AC}=AO.BO.cos\left(120^0\right)+AO.AC.cos\left(30^0\right)\)
\(=\frac{a\sqrt{3}}{3}.\frac{a\sqrt{3}}{3}.-\frac{1}{2}+\frac{a\sqrt{3}}{3}.a.\frac{\sqrt{3}}{2}=\frac{a^2}{3}\)
b.Gọi J là trung điểm CK
ta có \(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=2\overrightarrow{MK}+2\overrightarrow{MC}=4\overrightarrow{MJ}\)
do \(\left|4\overrightarrow{MJ}\right|=a\Leftrightarrow MJ=\frac{a}{4}\)vậy tập hợp M là các điểm nằm trên đường tròn tâm J bán kính a/4.
Bài 3. điều kiện \(x\ge1\)
đặt \(\sqrt{x-1}=a\ge0\) ta có
\(a^2+a+3=3\sqrt{a^3+1}\)
hay \(\left(a^2-a+1\right)+2\left(a+1\right)=3\sqrt{\left(a^2-a+1\right).\left(a+1\right)}\)
\(\Leftrightarrow\left(\sqrt{a^2-a+1}-\sqrt{a+1}\right)\left(\sqrt{a^2-a+1}-2\sqrt{a+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a^2-a+1=a+1\\a^2-a+1=4\left(a+1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\) hoặc \(a=\frac{5+\sqrt{37}}{2}\)
từ đó ta tìm được x thuộc tập \(S=\left\{1;5;\frac{33+5\sqrt{37}}{2}\right\}\)
Gọi x là số kg cam
y là số kg quýt
Theo đề , ta có
\(\hept{\begin{cases}x+y=6\\15000x+20000y=100000\end{cases}}\)
\(\hept{\begin{cases}x=4\\y=2\end{cases}}\)
Đk: \(x^3+1\ge0\Leftrightarrow x\ge-1\left(1\right)\)
Đặt \(a=\sqrt{x+1};b=\sqrt{x^2-x+1}\left(a\ge0,b>0\right)\left(2\right)\Rightarrow a^2+b^2=x^2+2\)
Khi đó pt đã cho trở thành: \(10ab=3\left(a^2+b^2\right)\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\Leftrightarrow\orbr{\begin{cases}a=3b\\b=3a\end{cases}}\)
+) Nếu a=3b thì từ (2) \(\Rightarrow\sqrt{x+1}=3\sqrt{x^2-x+1}\Leftrightarrow9x^2-10x+8=0\)( vô nghiệm)
+) Nếu b=3a thì từ (2) \(\Rightarrow3\sqrt{x+1}=\sqrt{x^2-x+1}\Leftrightarrow9x+9=x^2-x+1\Leftrightarrow x^2-10x-8=0\)
Pt có 2 nghiệm \(x_1=5+\sqrt{33};x_2=5-\sqrt{33}\left(tm\left(1\right)\right)\)