Theo em tình yêu thương con người đem lại ý nghĩa gì.Vì sao?
Theo em đoàn kết ,tương trợ có ý nghĩa như thế nào đối với con người.Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.Nếu a vuông góc với c và b vuông góc với c thì:
A. a vuông góc với b B. a song song với b C. a cắt b D. a trùng b
Câu 2. Nếu a // c và b // c thì:
A. a vuông góc với b B. a song song với b C. a cắt b D. a trùng b
Câu 3 Cho đường thẳng MN cắt đoạn thẳng AB tại I.Đường thẳng MN là trung trực của đoạn thẳng AB nếu;
A. MN vuông góc AB B.I là trung diểm của đoạn thẳng AB C. AB là trung trực của MN D. MN vuông góc AB và I là trung điểm của AB ( hình như vại )
câu 1:B
câu 2:B
câu 3:D
MÌNH CÓ THỂ KẾT BẠN VỚI CẬU ĐC KO
\(\sqrt{0,04.5}-\sqrt{0,5^2}:\sqrt{\frac{1}{4}}\) ý you thế này hay là
\(B=\sqrt{0,04}.5-\sqrt{0,05}^2:\sqrt{\frac{1}{4}}\)
\(B=\frac{1}{5}.5-\frac{1}{20}:\frac{1}{2}\)
\(B=1-\frac{1}{20}.\frac{2}{1}\)
\(B=1-\frac{1}{10}\)
\(B=\frac{10}{10}-\frac{1}{10}\)
\(B=\frac{9}{10}\)
1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
\(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
=> x = 75.4 : 15 = 20 ;
y = 60.4 : 15 = 16 ;
z = 45.4 : 15 = 12
Vậy x = 20 ; y = 16 ; z = 12
2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)
Nếu x + y + z + t = 0
=> x + y = - (z + t)
=> y + z = - (t + x)
=> z + t = - (x + y)
=> t + x = - (z + y)
Khi đó :
P = \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
=> P = 4
Nếu x + y + z + t khác 0
=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)
=> y + z + t = z + t + x = t + x + y = x + y + z
=> x =y = z = t
Khi đó : P = 1 + 1 + 1 + 1 = 4
Vậy nếu x + y + z + t = 0 thì P = - 4
nếu x + y + z + t khác 0 thì P = 4
\(A=|4x-3|+|5y+7,5|+17,5\)
\(|4x-3|\ge0\)
\(|5y+7,5|\ge0\)
\(\Leftrightarrow|4x-3|+|5y+7,5|+17,5\ge17,5\)
Vậy \(MaxA=17,5\)khi \(\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
gọi số quyển sách quyên góp được của lớp 7A, 7B, 7C lần lượt là a, b,c(quyển)
( ĐK: a,b,c thuộc N*)
Theo bài ra, ta có:
a/5= b/4= c/6= a+b-c/5+4-6= 90/3= 30(vì a+b-c= 90)
=> a= 30. 5= 150
b= 30.4= 120
c= 30.6= 180
Vậy số quyển sách quyên góp đc của lớp 7A, 7B, 7C lần lượt là 150 quyển, 120 quyển, 180 quyển.
CHÚC BẠN HỌC TỐT NHÉ
gọi số quyển sách quyên góp được của lớp 7A, 7B, 7C lần lượt là a, b,c(quyển) ( ĐK: a,b,c thuộc N*) Theo bài ra, ta có: a/5= b/4= c/6= a+b-c/5+4-6= 90/3= 30(vì a+b-c= 90) => a= 30. 5= 150 b= 30.4= 120 c= 30.6= 180 Vậy số quyển sách quyên góp đc của lớp 7A, 7B, 7C lần lượt là 150 quyển, 120 quyển, 180 quyển. CHÚC BẠN HỌC TỐT NHÉ
vì \(\left(x-5\right)^{10}\) có số mũ chẵn=>\(\left(x-5\right)^{10}\)với mọi x thì luôn \(\ge0\)
\(|y^2-0,04|\)với mọi y thì luôn \(\ge0\)
vì \(\left(3z+0,1\right)^2\)với mọi z thì luôn\(\ge0\)
mà\(\left(x-5\right)^{10}+\)\(|y^2-0,04|+\)\(\left(3z+0,1\right)^2\)\(=0\)
=>\(\hept{\begin{cases}x-5=0\\y^2-0,04=0\\3z+0,1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=5\\y=0.2\\z=\frac{-1}{30}\end{cases}}\)
chứng minh hả ok
A)\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{3}{3}.\frac{c}{d}\)(vì \(\frac{3}{3}=1\)mà một số a nhân với 1 thì bằng chính nó)
áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b}=\frac{3c}{3d}=\frac{a+3c}{a+3d}\)
\(\RightarrowĐpcm\)
b)\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{3}{3}.\frac{a}{b}=\frac{2}{2}.\frac{c}{d}\)
\(\Rightarrow\frac{3a}{3b}=\frac{2c}{2d}\)
áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a-2c}{3b-2d}\)
\(\RightarrowĐpcm\)