K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2022
Có nha Phải đăng kí nha
8 tháng 2 2022

Dạ vâng e cảm ơn cj Nguyễn Thu Trang ạ!

8 tháng 2 2022

jjjjjjjjjjjjjjjjjjj

7 tháng 2 2022

a2 + b2 + c2 = ab + bc + ca

<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

<=> (a2 - 2ab + b2) + (a2 - 2ca + c2) + (b2 - 2bc + c2) = 0

<=> (a - b)2 + (a - c)2 + (b - c)2 = 0

<=> \(\hept{\begin{cases}a-b=0\\a-c=0\\b-c=0\end{cases}}\Leftrightarrow a=b=c\)(đpcm) 

7 tháng 2 2022

Nhân vế 2 biểu thức, ta có:

\(2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab+2bc+2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\left(1\right)\)

\(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\)nên từ (1) \(\Rightarrow a-b=b-c=c-a=0\)hay \(a=b=c\)

7 tháng 2 2022

Ta có:\(\frac{1}{ab}+\frac{1}{cd}\ge\frac{8}{\left(a+b\right)\left(c+d\right)}\Leftrightarrow\left(\frac{1}{ab}+\frac{1}{cd}\right)\left(a+b\right)\left(c+d\right)\ge8\)

Xét bất đẳng thức Cô si

\(\hept{\begin{cases}\frac{1}{ab}+\frac{1}{cd}\ge2\sqrt{\frac{1}{abcd}}\\a+b\ge2\sqrt{ab}\\c+d\ge2\sqrt{cd}\end{cases}}\)

\(\Rightarrow\left(\frac{1}{ab}+\frac{1}{cd}\right)\left(a+b\right)\left(c+d\right)\ge2\cdot\frac{1}{\sqrt{abcd}}\cdot2\sqrt{ab}\cdot2\sqrt{cd}\)

\(\Rightarrow\left(\frac{1}{ab}+\frac{1}{cd}\right)\left(a+b\right)\left(c+d\right)\ge8\left(đpcm\right)\)

Dấu "=" xảy ra khi\(\hept{\begin{cases}\frac{1}{ab}=\frac{1}{cd}\\a=b\\c=d\end{cases}}\Leftrightarrow a=b=c=d\)

7 tháng 2 2022

Mình thì dư đoán điểm rơi \(a=b=c=1\) rồi, nhưng nháp mãi vẫn không ra được.

\(\frac{a}{b^3+ab}\)=\(\frac{a^2}{b^3a+a^2b}\)

tương tự thì ta có S= \(\frac{a^2}{b^3a+a^2b}\) +     \(\frac{b^2}{c^3b+b^2c}\)   +    \(\frac{c^2}{a^3c+ac^2}\)

áp dụng bất dẳng thức cô si s goát,ta có

S=\(\frac{a^2}{b^3a+a^2b}\)+     \(\frac{b^2}{c^3b+b^2c}\)+    \(\frac{c^2}{a^3c+ac^2}\)\(\ge\)   \(\frac{\left(a+b+c\right)^2}{b^3a+a^2b+c^3b+b^2c+a^3c+c^2a}\)

cái mẫu mk chx nghĩ  ra phân tích ra sao nx,tí nghĩ nốt

7 tháng 2 2022

bí rùi

16 tháng 2 2022

6 nha 

HT

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

7 tháng 2 2022

a, Xét tam giác ATB và tam giác ACT ta có : 

^A _ chung 

^ATB = ^BCT ( cùng chắn cung TB ) 

Vậy tam giác ATB~ tam giác ACT (g.g )

=> \(\frac{AT}{AC}=\frac{AB}{AT}\Rightarrow AT^2=AB.AC\)(1) 

b, Vì AT là tiếp tuyến đường tròn (O) 

=> ^ATO = 900

Xét tam giác ATO vuông tại T, đường cao TH ta có : 

\(AT^2=AH.AO\)( hệ thức lượng ) (2) 

Từ (1) ; (2) ta có đpcm 

\(\Rightarrow\frac{AC}{AH}=\frac{AO}{AB}\)

c, Xét tam giác ACO và tam giác AHB ta có : 

^A _ chung 

\(\frac{AC}{AH}=\frac{AO}{AB}\left(cmt\right)\)

Vậy tam giác ACO ~ tam giác AHB (c.g.c) 

=> ^ACO = ^AHB ( 2 góc tương ứng ) 

7 tháng 2 2022

giải nhanh hộ mik với

7 tháng 2 2022

a, Thay m = 2 ta được 

\(\hept{\begin{cases}x+2y=1\\2x+y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+4y=2\\2x+y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

b, Để hpt có nghiệm duy nhất khi \(\frac{1}{m}\ne\frac{m}{1}\Leftrightarrow m\ne1\)