Tìm x biết 4X-1+40=65
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$A=9^0+(9+9^2)+(9^3+9^4)+....+(9^{2013}+9^{2014})$
$=1+9(1+9)+9^3(1+9)+....+9^{2013}(1+9)$
$=1+(1+9)(9+9^3+....+9^{2013})$
$=1+10(9+9^3+....+9^{2013})$
$\Rightarrow A$ chia $10$ dư $1$.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
** Bổ sung điều kiện $x,y$ là số nguyên.
$x^2+(y+1)^2=1$
$\Rightarrow x^2=1-(y+1)^2\leq 1$ (do $(y+1)^2\geq 0$)
$\Rightarrow -1\leq x\leq 1$
Mà $x$ nguyên nên $x\in \left\{-1; 0; 1\right\}$.
Nếu $x=0$ thì $(y+1)^2=1-x^2=1\Rightarrow y+1=\pm 1\Rightarrow y=0$ hoặc $y=-2$
Nếu $x=-1$ thì $(y+1)^2=1-x^2=0\Rightarrow y=-1$
Nếu $x=1$ thì $(y+1)^2=1-x^2=0\Rightarrow y=-1$
![](https://rs.olm.vn/images/avt/0.png?1311)
S=1+3+3^2+...+3^100
3S=3+3^2+3^3+...+3^101
3S-S=(3+3^2+3^3+...+3^101)-(1+3+3^2+...+3^100)
2S=3+3^2+3^3+...+3^101-1-3-3^2-...-3^100
2S=3^101-1
Suy ra:2S+1=3^101-1+1=3^101
Mà 2S+1=3^n=3^101 nên n=101
![](https://rs.olm.vn/images/avt/0.png?1311)
1999 . 47 + 1999 . 53
= 1999 . ( 47 + 53 )
= 1999 . 100
= 199900
![](https://rs.olm.vn/images/avt/0.png?1311)
a/
$x+4\vdots x+1$
$\Rightarrow (x+1)+3\vdots x+1$
$\Rightarrow 3\vdots x+1$
$\Rightarrow x+1\in \left\{1; 3\right\}$
$\Rightarrow x\in \left\{0; 2\right\}$
b/
$10\equiv 1\pmod 9$
$\Rightarrow 10^n\equiv 1^n\equiv 1\pmod 9$
$5^3=125\equiv 8\pmod 9$
$\Rightarrow 10^n+5^3\equiv 1+8\equiv 0\pmod 9$
$\Rightarrow 10^n+5^3\vdots 9$
Vì $10^n+5^3\vdots 9; 9\vdots 3\Rightarrow 10^n+5^3\vdots 3$.
![](https://rs.olm.vn/images/avt/0.png?1311)
=(3+32+33)+(34+35+36)+.....+(37+38+38)
=3(1+3+32)+34(1+3+32)+.....+37(1+3+32)
=3.13+34.13+.....+37.13
=13(3+34+....+37) se chia het cho 13
\(A=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
4^x-1+1=65
4^x-1 =65-1
4^x-1 =64
4^x-1 =4^3
x-1 =3
x =3-1
x =2
Vậy,x= 2
4^x-1+1=65
4^x-1 =65-1
4^x-1 =64
4^x-1 =4^3
x-1 =3
x =3-1
x =2
Vậy,x= 2