Hãy vẽ sơ đồ các tầng lớp trong xã hội thời Lý (Tầng lớp thống trị, bị trị)
Những chi tiết cho thấy giáo dục thời Lý phát triển ?
Lịch Sử 7 Nha !!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có A=|x-1|+|x+2019|=|1-x|+|x+2019|>=|1-x+x+2019|=2020
=>A>2020
Dấu''='' xảy ra <=>(1-x)(x+2019)>0
<=>(x-1)(x+2019)<0
<=>-2019<x<1
Vậy MIN(A)=2020<=>-2019<x<1
có gì sai bạn bỏ qua nhé>3
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}\)=> \(\frac{x}{2}=\frac{2y}{6}=\frac{x-2y}{2-6}=\frac{-60}{-4}=15\)
=> \(\hept{\begin{cases}\frac{x}{2}=15\\\frac{y}{3}=15\end{cases}}\) => \(\hept{\begin{cases}x=15.2=30\\y=15.3=45\end{cases}}\)
Vậy ...
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
Chúc bạn học tốt !!!
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{11}=\frac{b+c-a}{4+11-3}=\frac{a+c-b}{3+11-4}\Rightarrow N=\frac{b+c-a}{a+c-b}=\frac{8}{10}=\frac{4}{5}\)
Gọi diện tích ba lớp 7a , 7b , 7c được giao lần lượt là a , b , c \(\left(a,b,c>0\right)\)
Theo bài ra , ta có : \(b-a=10\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{5}=\frac{b}{7}=\frac{c}{8}=\frac{b-a}{7-5}=\frac{10}{2}=5\)
\(\Rightarrow\hept{\begin{cases}a=5.5=25\left(TM\right)\\b=5.7=35\left(TM\right)\\c=5.8=40\left(TM\right)\end{cases}}\)
Vậy số diện tích vườn trường lớp 7a , 7b , 7c nhận chăm sóc lần lượt là : 25cm2 ; 35cm2 ; 40cm2.
1) \(3x=2y\)và \(\left(x+y\right)^3-\left(x-y\right)^3=126\)
Có: \(3x=2y\)=> \(\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{x+y}{2+3}\)
=> \(\frac{x+y}{5}=\frac{x-y}{-1}\)
=> \(\frac{\left(x+y\right)^3}{5^3}=\frac{\left(x-y\right)^3}{\left(-1\right)^3}=\frac{\left(x+y\right)^3-\left(x-y\right)^3}{5^3-\left(-1\right)^3}=\frac{126}{126}=1\)
=> \(\hept{\begin{cases}\frac{\left(x+y\right)^3}{5^3}=1\\\frac{\left(x-y\right)^3}{\left(-1\right)^3}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=5\\x-y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5+\left(-1\right)}{2}=2\\y=\frac{5-\left(-1\right)}{2}=3\end{cases}}\)
Vậy:...
2) Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{-3}=\frac{2x-3y+4z}{2.3-3.2+4.\left(-3\right)}=\frac{48}{-12}=-4\)
=>
\(\frac{x}{3}=-4\Rightarrow x=-12\)
\(\frac{y}{2}=-4\Rightarrow y=-8\)
\(\frac{z}{-3}=-4\Rightarrow z=12\)
Vậy:...
\(A=\frac{\left|x-2019\right|+2020-2}{\left|x-2019\right|+2020}=1-\frac{2}{\left|x-2019\right|+2020}\)
Vì \(\left|x-2019\right|\ge0\)
=> \(\left|x-2019\right|+2020\ge2020\)
=> \(\frac{2}{\left|x-2019\right|+2020}\le\frac{2}{2020}\)
=> \(-\frac{2}{\left|x-2019\right|+2020}\ge-\frac{2}{2020}\)
=> \(1-\frac{2}{\left|x-2019\right|+2020}\ge1-\frac{2}{2020}=\frac{2018}{2020}=\frac{1009}{1010}\)
=> \(A\ge\frac{1009}{1010}\)
Dấu "=" xảy ra <=> \(x-2019=0\Leftrightarrow x=2019\)
Vậy GTNN của A bằng 1009/1010 đạt tại x = 2019.