Chứng minh với mọi số tự nhiên n ta có n(n+1) luôn chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
giai
goi a la so hs cua lop 6d
a thuoc bc(2;3;4;8) 35<a<60
2=2 ;3=3 ;4=2mu2;8=2mu3
bcnn=2mu3nhan cho3=24
bc (2;3;4;8)=(0;24;48;72;...)
vay so hs cua lop 6d la 48 hs
![](https://rs.olm.vn/images/avt/0.png?1311)
Dễ mà , cô giáo minh vừa dạy xong:
Nhận xét:Khoảng cách giữa 2 thừa số trong mỗi số hạng là 1. Ta nhân 2 vế của S với 3 lần khoảng cách này ,ta được:
3S=3.(1.2+2.3+3.4+4.5+...+99.100)
3S=1.2.3+2.3.3+3.4.3+4.5.3+....+99.100.3
3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+....+99.100.(101-98)
3S=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+99.100.101-98.99.100
3S=99.100.101
S=99.100.101 /3
![](https://rs.olm.vn/images/avt/0.png?1311)
S = 2012-2011+2010-2009+......+2-1
S= (2012-2011)+(2010-2009)+.........+(2-1) [có 1006 cặp)
S= 1+1+..........+1 [có 1006 số 1]
Vậy S= 1.1006 = 1006
![](https://rs.olm.vn/images/avt/0.png?1311)
( Phần a bạn áp dụng vào công thức nhé! Mẹo nhỏ:Muốn giải bài toán phải vẽ hình đã.)
a) Vì B,C thuộc tia Ax mà AB < AC (6 cm < 9 cm) (gt(giả thiết)
=>Điểm B nằm giữa A và B
b) Vì B nằm giãu A và C (cmt(chứng minh trên)
=> AB + BC = AC
6 + BC = 9
=>BC = 9 - 6 =3 (cm)
Vậy BC= 3 cm
![](https://rs.olm.vn/images/avt/0.png?1311)
goi 3 so do la a,a+1,a+2
a co 1 trong 3 dang 3.k,3.k+1,3.k+2(k thuoc N)
neu a=3.k thia chia het cho 3
neu a=3.k+1 thi a+2 chia het cho 3
neu a=3.k+2 thi a+1 chia het cho 3
vay bai toan chung minh xong
|
Gọi ba số tự nhiên liên tiếp là : a, a +1 , a +2
Lấy a chia cho 3 ta được: a = 2.q + r với 0 ≤ r < 3.
+ Với r = 0 thì a = 3.q + 3
+ Với r = 1 thì a = 3.q + 1 . Khi đó : a + 2 = 3.q + 3
+ Với r = 2 thì a = 3.q + 2 . Khi đó a + 1 = 3.q + 3
Vậy trong ba số tự nhiên liên tiếp có một số chia h
![](https://rs.olm.vn/images/avt/0.png?1311)
vì số có tận cùng là 5 thì lũy thừa lên luôn có tận cùng là 5 nên 95354 luôn có tận cùng là 5
Mặt # ta luôn có số có tận cùng là 51 khi lũy thừa lên luôn cho 1 số tận cùng là 01
Từ 2 điều này => Hiệu mà bài ra có tận cùng là 4!
Chắc chắn sai đề vì n(n+1) luôn là số lẻ làm sao mà chia hết cho 2 được
Ừ nhỉ,quên mất
Xin lỗi nha!