((20-4x):(x2-25))+(5:(x+5))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh giỏi ban đầu của lớp là a; số học sinh của lớp là b
Ta có a = 30% x b
=> a = 3/10 x b (1)
Lại có a + 5 = 42,5% x b
=> a + 5 = 17/40 x b
=> a = 17/40 x b - 5 (2)
Từ (1) (2) => 3/10 x b = 17/40 x b - 5
=> 17/40 x b - 3/10 x b = 5
=> b x (17/40 - 3/10) = 5
=> b x 1/8 = 5
=> b = 40
Vậy lớp đó có 40 học sinh
Số HS giỏi tăng số % là:
42,5-30=12,5 %
12,5 % ứng với:5 HS
Số HS lớp 5A là :
5:12,5*100=40(HS)
Shop: vừa là danh từ và động từ.
Color: vừa là danh từ và động từ.
mk nói là dịch nghĩa của 2 từ đó thành danh từ và động từ của chúng
a)
=> \(x+2=69\)
=> \(x=67\)
b)
=> \(2^{x-5}=2^{30}\)
=> \(x-5=30\)
=> \(x=35\)
c)
=> \(3^x\left(3^2+1\right)=810\)
=> \(3^x.10=810\)
=> \(3^x=81\)
=> \(x=4\)
d)
=> \(5^x\left(5-1\right)=500\)
=> \(5^x.4=500\)
=> \(5^x=125\)
=> \(x=3\)
a) 3x + 2 = 369
=> x + 2 = 69
=> x = 67
b) 2x - 5 = 810
=> 2x - 5 = (23)10
=> 2x - 5 = 230
=> x - 5 = 30
=> x =35
c) 3x + 2 + 3x = 810
=> 3x(32 + 1) = 810
=> 3x.10 = 810
=> 3x = 81
=> 3x = 34
=> x = 4
d) 5x + 1 - 5x = 500
=> 5x(5 - 1) = 500
=> 5x.4 = 500
=> 5x = 125
=> 5x = 53
=> x = 3
gt <=> \(a^2+b^2+c^2-ab-bc-ca=0\)
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) (1)
TA LUÔN CÓ: \(\left(a-b\right)^2;\left(b-c\right)^2;\left(c-a\right)^2\ge0\forall a;b;c\)
=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DẤU "=" SẼ XẢY RA <=> \(\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\)
<=> \(a=b=c\)
VẬY TA CÓ ĐPCM.
a2 + b2 + c2 = ab + bc + ca
<=> 2( a2 + b2 + c2 ) = 2( ab + bc + ca )
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0 (*)
Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(c-a\right)^2\end{cases}}\ge0\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Đẳng thức xảy ra ( tức là (*) xảy ra ) <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow a=b=c\)
=> ĐPCM
a)
\(A=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\)
CÓ: \(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)
=> \(A\ge1\)
DẤU "=" XẢY RA <=> \(x=2\)
b)
\(2B=4x^2+6x+2=\left(2x+\frac{3}{2}\right)^2-0,25\)
CÓ: \(\left(2x+\frac{3}{2}\right)^2\ge0\forall x\Rightarrow\left(2x+\frac{3}{2}\right)^2-0,25\ge-0,25\)
DẤU "=" XẢY RA <=> \(2x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{4}\)
c)
\(C=\left(2x+\frac{5}{4}\right)^2-\frac{73}{16}\ge-\frac{73}{16}\)
DẤU "=" XẢY RA <=> \(2x+\frac{5}{4}=0\Leftrightarrow x=-\frac{5}{8}\)
a. Ta có :
\(A=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow\left(x-2\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
b. \(B=2x^2+3x+1=2\left(x+\frac{3}{4}\right)^2-\frac{1}{8}\)
Vì \(\left(x+\frac{3}{4}\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+\frac{3}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x+\frac{3}{4}\right)^2=0\Leftrightarrow x+\frac{3}{4}=0\Leftrightarrow x=-\frac{3}{4}\)
Vậy Bmin = - 1/8 <=> x = - 3/4
c. \(C=5x-3+4x^2=4\left(x+\frac{5}{8}\right)^2-\frac{73}{16}\)
Vì \(\left(x+\frac{5}{8}\right)^2\ge0\forall x\)\(\Rightarrow4\left(x+\frac{5}{8}\right)^2-\frac{73}{16}\ge-\frac{73}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow4\left(x+\frac{5}{8}\right)^2=0\Leftrightarrow x+\frac{5}{8}=0\Leftrightarrow x=-\frac{5}{8}\)
Vậy Cmin = - 73/16 <=> x = - 5/8
Công thức tính diện tích hình thoi là: Tích của 2 đường chéo : 2.
Đổi: 362 m = 3620 dm.
Diện tích mảnh đất hình thoi có độ dài 2 đường chéo là 189dm và 362m là:
(189 x 3620) : 2 = 342090 (dm^2). = 3420,9 (m^2)
Đáp số: 342090 dm^2
S hình thoi=Tích 2 đường chéo :2
đổi :362 m= 3620dm
=>s hình thoi :
(3620*189):2=342090(dm2)=3420,9m2
CÓ: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=5\)
CÓ: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(5-2\right)=3.3=9\)
CÓ: \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=5^2-2.2^2=25-8=17\)
CÓ: \(x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-x^4y-xy^4=3.17-xy\left(x^3+y^3\right)\)
\(=51-2.9=51-18=33\)
CÓ: \(x^6+y^6=\left(x+y\right)\left(x^5+y^5\right)-xy^5-x^5y\)
\(=3.33-xy\left(x^4+y^4\right)=3.33-2.17\)
\(=99-34=65\)
\(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=9-4=5\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=27-18=9\)
\(x^4+y^4=\left(x+y\right)^4-4xy\left(x^2+y^2\right)-3xy.2xy\)
\(=3^4-4.2.5-3.2.2.2=81-40-24=17\)
Chiều rộng mảnh bìa hình chữ nhật là
30 : 150% = 20 m
=> Diện tích mảnh bìa hình chữ nhật đó ;à
30 x 20 = 600m2
Đáp số 600m2
chiều dài = 150 phần trăm = 3/2 chiều rộng
vậy chiều rộng mảnh bìa hình chữ nhật :30:3/2 = 20
s = 20 nhân 30 =600
Bài làm:
a) \(A=\left|x-0,25\right|\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-0,25\right|=0\Rightarrow x=0,25\)
Vậy GTNN A là 0 khi x = 0,25
b) \(B=\left|x+0,25\right|+1,75\ge1,75\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+0,25\right|=0\Rightarrow x=-0,25\)
Vậy GTNN B là 1,75 khi x = -0,25
Bài làm:
Ta có: \(\left[\left(20-4x\right)\div\left(x^2-25\right)\right]+5\div\left(x+5\right)\)
\(=\frac{4\left(5-x\right)}{\left(x-5\right)\left(x+5\right)}+\frac{5}{x+5}\)
\(=\frac{-4}{x+5}+\frac{5}{x+5}\)
\(=\frac{1}{x+5}\)
\(\left[\left(20-4x\right):\left(x^2-25\right)\right]+\left[5:\left(x+5\right)\right]\)ĐK : x \(\ne\pm5\)
\(\Leftrightarrow\left[\frac{20-4x}{x^2-25}\right]+\left[\frac{5}{x+5}\right]\)
\(\Leftrightarrow\left[\frac{-4\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\right]+\left[\frac{5}{x+5}\right]\)
\(\Leftrightarrow\left[\frac{-4}{x+5}\right]+\left[\frac{5}{x+5}\right]=\frac{-4+5}{x+5}=\frac{1}{x+5}\)