K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)   => \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)(1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

TỪ(1) => \(\frac{3x+3+2y+4+z+2}{6+6+4}=\frac{\left(3x+2y+z\right)+\left(3+4+2\right)}{16}\)

=\(\frac{105+9}{16}=\frac{57}{8}\)

b)tương tự câu a

15 tháng 8 2020

a) Ta có :\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)

=> \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)

Lại có 3x - 2y + z = 105

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}=\frac{3x+3-2y-4+z+2}{6-6+4}=\frac{\left(3x-2y+z\right)+3-4+2}{4}\) 

                                                                                                                      \(=\frac{105+1}{4}=\frac{106}{4}=26,5\)

=> x = 52 ; y = 77,5 ; z = 104

b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)

Đặt \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=k\Rightarrow\hept{\begin{cases}x^2=4k\\y^2=9k\\z^2=16k\end{cases}}\)

Lại có x2 - y2 + 2z2 = 108

=> 4k - 9k + 2.16k = 108

=> -5k + 32k = 108

=> 27k = 108

=> k = 4

=> x = \(\pm\)4 ; y = \(\pm\)6 ; z = \(\pm\)8

Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=> x ; y ; z cùng dấu

=> các cặp số (x;y;z) thỏa mãn bài toán là (-4;-6;-8) ; (4;6;8)

16 tháng 8 2020

Ta có 3^3 = 27; 5^2 = 25. => 3^3 > 5^2.

=> (3^3)^14 > (5^2)^14. => 3^(3.14) > 5^(2.14).

=> 3^42 > 5^28. Mà 3^46 > 3^42. => 3^46 > 5^28.

Kết luận: Vậy 3^46 > 5^28.

15 tháng 8 2020

\(A=\frac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}+\frac{y}{\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)}-\frac{x+y}{\sqrt{xy}}\)

\(A=\frac{x\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)+y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-\left(x+y\right)\left(y-x\right)}{\sqrt{xy}\left(y-x\right)}\)

\(A=\frac{x\sqrt{xy}-x^2+y\sqrt{xy}+y^2-y^2+x^2}{\sqrt{xy}\left(y-x\right)}\)

\(A=\frac{\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(y-x\right)}=\frac{y+x}{y-x}\)

KO CÓ GIÁ TRỊ y sao tính đây !!!!!!

CÒN      \(x=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)     nhé

Ta có:

   (-2)91 = [ (-2)13 ]7 = (-8192)7

   (-5)35 = [ (-5)5 ]7 = (-3125)7

Vì -8192 < -3125 nên (-8192)7 < (-3125)7

Vậy (-2)91 < (-5)35

HỌC TỐT !

15 tháng 8 2020

Số tròn trăm lớn nhất có 4 chữ số là : \(9900\)

Số tròn chục nhỏ nhất có 5 chữ số là : \(11110\)

Tổng của hai số đó là :

\(9990+11110=21100\)

Đáp số : \(21100\)

15 tháng 8 2020

Số tròn trăm lớn nhất có bốn chữ số là : 9900

Số tròn chục nhỏ nhất có năm chữ số là : 11110

Tổng của hai số đó là :

9900 + 11110 = 21100

Đáp số : 21100

15 tháng 8 2020

tui ko bt

15 tháng 8 2020

nó chỉ để làm cảnh vật thôi!

a)\(A=\frac{6}{-2^2-3}\)

Ta có: \(x^2\ge0\Rightarrow2x^2+3\ge3\forall x\Rightarrow-2x^2-3\le-3\)

\(\Rightarrow A\ge-2\Rightarrow MinA=-2\)khi x=0

b) Ta có: \(x^2+2x+6=\left(x+1\right)^2+5\ge5\Rightarrow-x-2x-6\le-5\)

\(\Rightarrow B\ge\frac{-1}{5}\Rightarrow MinB=\frac{-1}{5}\)khi x=-1

c) Ta có:\(10x-x^2+3=-\left(x^2-10x+25\right)+28\le28\)\(\Rightarrow C\ge\frac{7}{28}=\frac{1}{4}\)

15 tháng 8 2020

c) ĐKXĐ : \(x\ne4\)

Để biểu thức \(\frac{3x^3-4x^2+x-1}{x-4}\) nguyên với \(x\) nguyên thì :

\(3x^3-4x^2+x-1⋮x-4\)

\(\Leftrightarrow3x^3-12x^2+8x^2-32x+33x-132+131⋮x-4\)

\(\Leftrightarrow3x^2.\left(x-4\right)+8x.\left(x-4\right)+31.\left(x-4\right)+131⋮x-4\)

\(\Leftrightarrow131⋮x-4\)

\(\Leftrightarrow x-4\inƯ\left(131\right)\)

\(\Leftrightarrow x-4\in\left\{-1,1,131,-131\right\}\)

\(\Leftrightarrow x\in\left\{3,5,135,-127\right\}\)

d) ĐKXĐ : \(x\ne-\frac{3}{2}\)

Để biểu thức \(\frac{3x^2-x+1}{3x+2}\) nhận giá trị nguyên với \(x\) nguyên thì :

\(3x^2-x+1⋮3x+2\)

\(\Leftrightarrow3x^2+2x-3x-2+3⋮3x+2\)

\(\Leftrightarrow x.\left(3x+2\right)-\left(3x+2\right)+3⋮3x+2\)

\(\Leftrightarrow3⋮3x+2\)

\(\Leftrightarrow3x+2\inƯ\left(3\right)\)

\(\Leftrightarrow3x+2\in\left\{-1,1,-3,3\right\}\)

\(\Leftrightarrow x\in\left\{-1,-\frac{1}{3},-\frac{5}{3},\frac{1}{3}\right\}\) mà \(x\) nguyên 

\(\Rightarrow x=-1\)

15 tháng 8 2020

Bài làm:

Ta có: \(2009-\left|x-2009\right|=x\)

\(\Leftrightarrow\left|x-2009\right|=2009-x\)

\(\Leftrightarrow\orbr{\begin{cases}x-2009=2009-x\\x-2009=x-2009\end{cases}}\Rightarrow\orbr{\begin{cases}2x=2009.2\\0x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2009\\0x=0\end{cases}}\)

Vậy PT thỏa mãn với mọi x 

15 tháng 8 2020

Bài này ta áp dụng kiến thức sau :  \(\left|A\right|=\hept{\begin{cases}A\Leftrightarrow A\ge0\\-A\Leftrightarrow A< 0\end{cases}}\)

Ta có : \(2009-\left|x-2009\right|=x\)

\(\Leftrightarrow\left|x-2009\right|=2009-x\)

\(\Leftrightarrow x-2009\le0\)

\(\Leftrightarrow x\le2009\)

Vậy \(x\le2009\)