Tìm x, y, z biết :
(x+1) /2 = (y+2) /3 = (z+2) /4 và 3x - 2y + z = 105
x/2 = y/3 = z/4 và x^2 - y^2 + 2z^2 = 108
Giúp mik với ạ, cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}+\frac{y}{\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)}-\frac{x+y}{\sqrt{xy}}\)
\(A=\frac{x\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)+y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-\left(x+y\right)\left(y-x\right)}{\sqrt{xy}\left(y-x\right)}\)
\(A=\frac{x\sqrt{xy}-x^2+y\sqrt{xy}+y^2-y^2+x^2}{\sqrt{xy}\left(y-x\right)}\)
\(A=\frac{\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(y-x\right)}=\frac{y+x}{y-x}\)
KO CÓ GIÁ TRỊ y sao tính đây !!!!!!
CÒN \(x=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\) nhé
Ta có:
(-2)91 = [ (-2)13 ]7 = (-8192)7
(-5)35 = [ (-5)5 ]7 = (-3125)7
Vì -8192 < -3125 nên (-8192)7 < (-3125)7
Vậy (-2)91 < (-5)35
HỌC TỐT !
Số tròn trăm lớn nhất có 4 chữ số là : \(9900\)
Số tròn chục nhỏ nhất có 5 chữ số là : \(11110\)
Tổng của hai số đó là :
\(9990+11110=21100\)
Đáp số : \(21100\)
a)\(A=\frac{6}{-2^2-3}\)
Ta có: \(x^2\ge0\Rightarrow2x^2+3\ge3\forall x\Rightarrow-2x^2-3\le-3\)
\(\Rightarrow A\ge-2\Rightarrow MinA=-2\)khi x=0
b) Ta có: \(x^2+2x+6=\left(x+1\right)^2+5\ge5\Rightarrow-x-2x-6\le-5\)
\(\Rightarrow B\ge\frac{-1}{5}\Rightarrow MinB=\frac{-1}{5}\)khi x=-1
c) Ta có:\(10x-x^2+3=-\left(x^2-10x+25\right)+28\le28\)\(\Rightarrow C\ge\frac{7}{28}=\frac{1}{4}\)
c) ĐKXĐ : \(x\ne4\)
Để biểu thức \(\frac{3x^3-4x^2+x-1}{x-4}\) nguyên với \(x\) nguyên thì :
\(3x^3-4x^2+x-1⋮x-4\)
\(\Leftrightarrow3x^3-12x^2+8x^2-32x+33x-132+131⋮x-4\)
\(\Leftrightarrow3x^2.\left(x-4\right)+8x.\left(x-4\right)+31.\left(x-4\right)+131⋮x-4\)
\(\Leftrightarrow131⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(131\right)\)
\(\Leftrightarrow x-4\in\left\{-1,1,131,-131\right\}\)
\(\Leftrightarrow x\in\left\{3,5,135,-127\right\}\)
d) ĐKXĐ : \(x\ne-\frac{3}{2}\)
Để biểu thức \(\frac{3x^2-x+1}{3x+2}\) nhận giá trị nguyên với \(x\) nguyên thì :
\(3x^2-x+1⋮3x+2\)
\(\Leftrightarrow3x^2+2x-3x-2+3⋮3x+2\)
\(\Leftrightarrow x.\left(3x+2\right)-\left(3x+2\right)+3⋮3x+2\)
\(\Leftrightarrow3⋮3x+2\)
\(\Leftrightarrow3x+2\inƯ\left(3\right)\)
\(\Leftrightarrow3x+2\in\left\{-1,1,-3,3\right\}\)
\(\Leftrightarrow x\in\left\{-1,-\frac{1}{3},-\frac{5}{3},\frac{1}{3}\right\}\) mà \(x\) nguyên
\(\Rightarrow x=-1\)
Bài làm:
Ta có: \(2009-\left|x-2009\right|=x\)
\(\Leftrightarrow\left|x-2009\right|=2009-x\)
\(\Leftrightarrow\orbr{\begin{cases}x-2009=2009-x\\x-2009=x-2009\end{cases}}\Rightarrow\orbr{\begin{cases}2x=2009.2\\0x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2009\\0x=0\end{cases}}\)
Vậy PT thỏa mãn với mọi x
Bài này ta áp dụng kiến thức sau : \(\left|A\right|=\hept{\begin{cases}A\Leftrightarrow A\ge0\\-A\Leftrightarrow A< 0\end{cases}}\).
Ta có : \(2009-\left|x-2009\right|=x\)
\(\Leftrightarrow\left|x-2009\right|=2009-x\)
\(\Leftrightarrow x-2009\le0\)
\(\Leftrightarrow x\le2009\)
Vậy \(x\le2009\)
\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\) => \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
TỪ(1) => \(\frac{3x+3+2y+4+z+2}{6+6+4}=\frac{\left(3x+2y+z\right)+\left(3+4+2\right)}{16}\)
=\(\frac{105+9}{16}=\frac{57}{8}\)
b)tương tự câu a
a) Ta có :\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)
=> \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)
Lại có 3x - 2y + z = 105
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}=\frac{3x+3-2y-4+z+2}{6-6+4}=\frac{\left(3x-2y+z\right)+3-4+2}{4}\)
\(=\frac{105+1}{4}=\frac{106}{4}=26,5\)
=> x = 52 ; y = 77,5 ; z = 104
b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Đặt \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=k\Rightarrow\hept{\begin{cases}x^2=4k\\y^2=9k\\z^2=16k\end{cases}}\)
Lại có x2 - y2 + 2z2 = 108
=> 4k - 9k + 2.16k = 108
=> -5k + 32k = 108
=> 27k = 108
=> k = 4
=> x = \(\pm\)4 ; y = \(\pm\)6 ; z = \(\pm\)8
Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=> x ; y ; z cùng dấu
=> các cặp số (x;y;z) thỏa mãn bài toán là (-4;-6;-8) ; (4;6;8)