K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2014

1a x b3=1023 --> phân tích 1023 = 3.11.31 ---> 1023=11.93 
Vậy a=1 và b=9 --> ab=91

8 tháng 1 2015

dễ thấy để S(n) và S(n+1) đều chia hết cho 1 số thì đuôi của n kết thúc bằng các số 9.

giả sử n có x số 9 cuối(ta tìm x nhỏ nhất)

khi đó n có dạng a 99...9 (x số 9)

=> n+1=b00...0 ( x+1 số 0) với b=a+1

do S(n) ≡ S(n+1) (mod 7) =>  a+9x ≡ b (mod 7) => 9x  ≡ 1 (mod 7) 

=> x=4

=> n=a9999

mà S(n) chia hết cho 7 => a=6 => n=69999 là nhỏ nhất thỏa mãn :D

20 tháng 12 2014

vi Ư của a , b = 16 => a = 16n và b = 16m

ta có 16n + 16m = 128 <=> 16 ( n + m ) = 128

                                     <=>  n + m = 128 : 16 = 8

ta có các trường hợp : n =1 ; m =7 => a = 16 ; b = 112

                                    n = 2 ; m = 6  loại vì ( a, b )= 32

                                    n = 3 ; m = 5 => a = 48 ; b = 80

                                    n = 4 ; m = 4 ( loại )

vậy nếu a = 16 , b = 112 và ngược lại

      nếu a = 48 , b = 80  và ngược lại

21 tháng 1 2019

thiếu trường hợp 8 và 0,0 và8

20 tháng 12 2014

\(=>4A=4+4^2+...+4^{99}+4^{100}\)

\(=>4A-A=\left(4+4^2+...+4^{99}+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)

\(=>3A=4^{100}-1\)

\(=>A=\frac{4^{100}-1}{3}\)

\(\frac{1}{3}B=\frac{4^{100}}{3}\)

=> A<\(\frac{1}{3}B\)

3 tháng 8 2020

A = 1 + 4 + 42 + 43 + ... + 499

4A = 4( 1 + 4 + 42 + 43 + ... + 499 )

4A = 4 + 42 + 43 + ... + 4100

4A - A = 3A

= ( 4 + 42 + 43 + ... + 4100 ) - ( 1 + 4 + 42 + 43 + ... + 499 )

= 4 + 42 + 43 + ... + 4100 - 1 - 4 - 42 - 43 - ... - 499

= 4100 - 1

=> \(A=\frac{4^{100}-1}{3}\)

B = 4100 => \(\frac{1}{3}B=4^{100}\cdot\frac{1}{3}=\frac{4^{100}}{3}\)

\(4^{100}-1< 4^{100}\Rightarrow\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\Rightarrow A< \frac{1}{3}B\left(đpcm\right)\)