Chia 80 cho một số a ta được số dư là 33 .Vậy số a có thểlà ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a x b3=1023 --> phân tích 1023 = 3.11.31 ---> 1023=11.93
Vậy a=1 và b=9 --> ab=91
dễ thấy để S(n) và S(n+1) đều chia hết cho 1 số thì đuôi của n kết thúc bằng các số 9.
giả sử n có x số 9 cuối(ta tìm x nhỏ nhất)
khi đó n có dạng a 99...9 (x số 9)
=> n+1=b00...0 ( x+1 số 0) với b=a+1
do S(n) ≡ S(n+1) (mod 7) => a+9x ≡ b (mod 7) => 9x ≡ 1 (mod 7)
=> x=4
=> n=a9999
mà S(n) chia hết cho 7 => a=6 => n=69999 là nhỏ nhất thỏa mãn :D
vi Ư của a , b = 16 => a = 16n và b = 16m
ta có 16n + 16m = 128 <=> 16 ( n + m ) = 128
<=> n + m = 128 : 16 = 8
ta có các trường hợp : n =1 ; m =7 => a = 16 ; b = 112
n = 2 ; m = 6 loại vì ( a, b )= 32
n = 3 ; m = 5 => a = 48 ; b = 80
n = 4 ; m = 4 ( loại )
vậy nếu a = 16 , b = 112 và ngược lại
nếu a = 48 , b = 80 và ngược lại
\(=>4A=4+4^2+...+4^{99}+4^{100}\)
\(=>4A-A=\left(4+4^2+...+4^{99}+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)
\(=>3A=4^{100}-1\)
\(=>A=\frac{4^{100}-1}{3}\)
\(\frac{1}{3}B=\frac{4^{100}}{3}\)
=> A<\(\frac{1}{3}B\)
A = 1 + 4 + 42 + 43 + ... + 499
4A = 4( 1 + 4 + 42 + 43 + ... + 499 )
4A = 4 + 42 + 43 + ... + 4100
4A - A = 3A
= ( 4 + 42 + 43 + ... + 4100 ) - ( 1 + 4 + 42 + 43 + ... + 499 )
= 4 + 42 + 43 + ... + 4100 - 1 - 4 - 42 - 43 - ... - 499
= 4100 - 1
=> \(A=\frac{4^{100}-1}{3}\)
B = 4100 => \(\frac{1}{3}B=4^{100}\cdot\frac{1}{3}=\frac{4^{100}}{3}\)
\(4^{100}-1< 4^{100}\Rightarrow\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\Rightarrow A< \frac{1}{3}B\left(đpcm\right)\)