Cho hình thang ABCD (AB // CD) với AB = a, BC = b, CD = c, DA = d. Các tia
phân giác của góc A và góc D cắt nhau tại E, các tia phân giác của góc B và góc C cắt nhau
tại F. Gọi M, N theo thứ tự là trung điểm của AD và BC.
a) Chứng minh M, E, F, N thẳng hàng.
b) Tính độ dài MN, MF, FN theo a, b, c, d.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(16^{^3}:8^2=\left(8.2\right)^3:8^2=8^3.2^3:8^2=\left(8^3:8^2\right).2^3=8.8=64\)
b)\(8^3.\left(0,125\right)^3=\left(8.0,125\right)^3=1^3=1\)
c)\(7^{^{200}}.\left(\frac{1}{7}\right)^{200}=\left(7.\frac{1}{7}\right)^{200}=1^{200}=1\)
d)\(4.\left(0,25\right)^3.64=4.\left(0,25\right)^3.4^3=4.\left(0,25.4\right)^3=4.1=4\)
e)....
cậu có thể tham khảo bài làm trên đây ạ, chúc cậu hok tốt ^^
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(P=a\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}+\frac{a}{b}=a\sqrt{\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}\)
=\(a\sqrt{\frac{a^2\left(a+1\right)^2+2a\left(a+1\right)+1}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}=a\sqrt{\frac{\left[a\left(a+1\right)+1\right]^2}{\left[a\left(a+1\right)\right]^2}}+\frac{a}{a+1}\)
\(=a.\frac{a\left(a+1\right)+1}{a\left(a+1\right)}+\frac{a}{a+1}=a+\frac{1}{a+1}+\frac{a}{a+1}=a+1\)
Vay P=a+1
phan b,c ap dung phan a la ra
CM bài toán phụ: \(x+y+z=0\)
CM: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) với x,y,z dương
Ta có: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}\)
\(=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\cdot\frac{x+y+z}{xyz}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Áp dụng vào ta được: \(Q=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2020}-\frac{1}{2021}\)
\(Q=2021-\frac{1}{2021}=...\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : xy + x + y = -1
=> x(y + 1) + y + 1 = -1 + 1
=> (x + 1)(y + 1) = 0
=> \(\orbr{\begin{cases}x+1=0\\y+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\)(đpcm)
Vậy nếu xy + x + y = - 1 thì có ít nhất 1 số bằng - 1
xy + x + y = -1
<=> xy + x + y + 1 = 0
<=> x( y + 1 ) + 1( y + 1 ) = 0
<=> ( x + 1 )( y + 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\) ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
thì phân tích thành nhân tử là oke
\(x^2+x+1>0\)
\(\Leftrightarrow x^2+x+\frac{1}{4}+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)*đúng*
Ta có:\(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\in R\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{\left(81,624:4\frac{4}{3}-4,505\right)+125\frac{3}{4}}{\left[\left(\left(\frac{11}{25}\right)^2:0,08+3,53\right)^2-\left(2,75\right)^2\right]:\frac{13}{25}}\)
\(=\frac{\left(\frac{10203}{125}.\frac{3}{16}-\frac{901}{200}\right)+\frac{503}{4}}{\left[\left(\frac{121}{625}.\frac{25}{2}+\frac{353}{100}\right)^2-\frac{121}{16}\right].\frac{25}{13}}\)
\(=\frac{\left(15,3045-\frac{901}{200}\right)+\frac{503}{4}}{\left(\frac{14161}{400}-\frac{121}{16}\right).\frac{25}{13}}\)
\(=\frac{136,5495}{\frac{696}{13}}\)
\(=2,550493534\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)\(\left(-8\right)^2=64\)
2)\(\left(-1,25\right)^2=1,56\)
3) \(3^5=243\)
4) \(2^5:2^3\Leftrightarrow2^{5-3}=2^2\)
5) \(\left(-4\right)^2\times\left(-4\right)=\left(-4\right)^{2+1}=\left(-4\right)^3\)
6) \(\left(\frac{2}{3}\right)^3\times\left(\frac{2}{3}\right)^2=\left(\frac{2}{3}\right)^{3+2}=\left(\frac{2}{3}\right)^5\)
6,1. = 64
2 . = 1,56
3 . =243
4 , = 22 = 4
5 , (-43) = -12
6, = 2/3 5 = 22 / 213