K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

a. \(2x^3+3x^2+2x+3=2x\left(x^2+1\right)+3\left(x^2+1\right)=\left(2x+3\right)\left(x^2+1\right)\)

b. \(a^2-ab+a-b=a\left(a+1\right)-b\left(a+1\right)=\left(a-b\right)\left(a+1\right)\)

c. \(2x^2+4x+2-2y^2=2\left(x^2+2x+1-y^2\right)=2\left(x+1+y\right)\left(x+1-y\right)\)

d. \(x^4-2x^3+10x^2-20x=x\left(x^3-2x^2+10x-20\right)\)

\(==x.x\left(x^2+10\right)-2\left(x^2+10\right)=x\left(x-2\right)\left(x^2+10\right)\)

e. \(x^3+2x^2+x=x^2\left(x+1\right)+x\left(x+1\right)=\left(x^2+x\right)\left(x+1\right)\)

f. \(xy+y^2-x-y=x\left(y-1\right)+y\left(y-1\right)=\left(x+y\right)\left(y-1\right)\)

19 tháng 8 2020

a) 2x3 + 3x2 + 2x + 3

= ( 2x3 + 2x ) + ( 3x2 + 3 )

= 2x( x2 + 1 ) + 3( x2 + 1 )

= ( x2 + 1 )( 2x + 3 )

b) a2 - ab + a - b

= ( a2 + a ) - ( ab + b )

= a( a + 1 ) - b( a + 1 )

= ( a - b )( a + 1 )

c) 2x2 + 4x + 2 - 2y2

= ( 2x2 - 2y2 ) + ( 4x + 2 )

= 2( x2 - y2 ) + 2( 2x + 1 )

= 2( x2 - y2 + 2x + 1 )

= 2[ ( x2 + 2x + 1 ) - y2 ]

= 2[ ( x + 1 )2 - y2 ]

= 2( x - y + 1 )( x + y + 1 )

d) x4 - 2x3 + 10x2 - 20x

= x( x3 - 2x2 + 10x - 20 )

= x[ ( x3 - 2x2 ) + ( 10x - 20 ) ]

= x[ x2( x - 2 ) + 10( x - 2 ) ]

= x( x - 2 )( x2 + 10 )

e) x3 + 2x2 + x = x( x2 + 2x + 1 ) = x( x + 1 )2

f) xy + y2 - x - y

= ( xy - x ) + ( y2 - y )

= x( y - 1 ) + y( y - 1 )

= ( x + y )( y - 1 )

19 tháng 8 2020

@hoàng đây là tính hay gì bạn . Nếu tính thì :

a) (2x + 5y)2

= (2x + 5y)(2x + 5y)

= 2x(2x + 5y) + 5y(2x + 5y)

= 4x2 + 10xy + 10xy + 25y2

= 4x2 + 20xy + 25y2

b) Bạn sửa đề lại nhé

c) (4x - 7y)2 = (4x - 7y)(4x - 7y)

= 4x(4x - 7y) - 7y(4x - 7y)

= 16x2 - 28xy - 28xy + 49y2

= 16x2 - 56xy + 49y2

d) (3x3 - 2y2)2

= (3x3 - 2y2)(3x3 - 2y2)

= 3x3(3x3 - 2y2) - 2y2(3x3 - 2y2)

= 9x6 - 6x3y2 - 6x3y2 + 4y4

= 9x6 - 12x3y2 + 4y4

@huanhoahong bạn không biết làm thì đừng có vô đây để trả lời và nói xấu bạn

Câu 1:a. Tìm các số tự nhiên x, y. sao cho (2x + 1)(y – 5) = 12b.Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1c. Tìm tất cả các số , biết rằng số B chia hết cho 99Câu 2.a. Chứng tỏ rằng  là phân số tối giản.b. Chứng minh rằng: Câu 3:Một bác nông dân mang cam đi bán. Lần thứ nhất bán 1/2số cam và 1/2 quả; Lần thứ 2 bán 1/3 số cam còn lạivà 1/3 quả; Lần thứ 3 bán 1/4số cam còn lại và 3/4 quả....
Đọc tiếp

Câu 1:

a. Tìm các số tự nhiên x, y. sao cho (2x + 1)(y – 5) = 12

b.Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1

c. Tìm tất cả các số Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán, biết rằng số B chia hết cho 99

Câu 2.

a. Chứng tỏ rằng Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán là phân số tối giản.

b. Chứng minh rằng: Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

Câu 3:

Một bác nông dân mang cam đi bán. Lần thứ nhất bán 1/2số cam và 1/2 quả; Lần thứ 2 bán 1/3 số cam còn lạivà 1/3 quả; Lần thứ 3 bán 1/4số cam còn lại và 3/4 quả. Cuối cùng còn lại 24 quả. Hỏi số cam bác nông dân đã mang đi bán.

Câu 4:

Cho 101 đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau, không có ba đường thẳng nào đồng quy. Tính số giao điểm của chúng.


Câu 1: (2 điểm) Cho biểu thức: Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

a, Rút gọn biểu thức

b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.

Câu 2: (1 điểm)

Tìm tất cả các số tự nhiên có 3 chữ số  sao cho Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

Câu 3: (2 điểm)

a. Tìm n để n2 + 2006 là một số chính phương

b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.

Câu 4: (2 điểm)

a. Cho a, b, n thuộc N*. Hãy so sánh Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

b. Cho Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán. So sánh A và B.

Câu 5: (2 điểm)

Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Câu 6: (1 điểm)

Cho 2006 đường thẳng trong đó bất kì 2 đườngthẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.

 

1
18 tháng 8 2020

Cậu ơi, c nên gửi từng bài một lên. Bài dài quá mn sẽ ko lm đâu và nếu lm thì cx chỉ lm ít thôi.

Mà sao cũng cảm ơn c đã tốn tg để soạn bài và đăng bài lên đây.

18 tháng 8 2020

Vì \(\left(2x-1\right)^2\ge0\forall x\)

Nên\(\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\)

Vậy GTLN của B là \(\frac{5}{3}\). Dấu "=" xảy ra <=>x=\(\frac{1}{2}\)

19 tháng 8 2020

\(B=\frac{5}{\left(2x-1\right)^2+3}\)

Để B đạt GTLN => \(\left(2x-1\right)^2+3\)đạt GTNN

mà ta có \(\left(2x-1\right)^2\ge0\forall x\Rightarrow\left(2x-1\right)^2+3\ge3\)

Dấu " = " xảy ra <=> 2x - 1 = 0 => x = 1/2

=> MaxB = \(\frac{5}{\left(2\cdot\frac{1}{2}-1\right)^2+3}=\frac{5}{3}\)

\(x^2-7=6\sqrt{x+5}-30\)

\(\Leftrightarrow x^2-7+30=6\sqrt{x+5}-30+30\)( thêm 30 vào cả 2 vế )

\(\Leftrightarrow x^2+23=6\sqrt{x+5}\)

\(\Leftrightarrow x^4+46x^2+529=36x+180\)

\(\Leftrightarrow x^4-46x^2-36x+349=0\)( vô nghiệm )

18 tháng 8 2020

a)

Liên tiếp áp dụng HTL, ta có:   \(\hept{\begin{cases}AB.AK=AH^2\\HB.HC=AH^2\end{cases}}\)   

=>   \(AB.AK=HB.HC\)

=> TA CÓ ĐPCM.

b) LIÊN TIẾP ÁP DỤNG HTL TA ĐƯỢC: 

\(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.CB\end{cases}}\)

CÓ:   \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.CB}=\frac{HB}{HC}\)

VẬY TA CÓ ĐPCM.

18 tháng 8 2020

Bằng 4501344 nha bạn

Hok tốt

k nha

56788 + 4444556 = 4501334

k mk nhé ⁴⁰⁴ツ

18 tháng 8 2020

a)

\(=x^2\left(2x+3\right)+\left(2x+3\right)\)

\(=\left(x^2+1\right)\left(2x+3\right)\)

b)

\(=a\left(a-b\right)+a-b\)

\(=\left(a+1\right)\left(a-b\right)\)

c)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left(x+1-y\right)\left(x+1+y\right)\)

d)

\(=x^3\left(x-2\right)+10x\left(x-2\right)\)

\(=x\left(x^2+10\right)\left(x-2\right)\)

e)

\(=x\left(x^2+2x+1\right)\)

\(=x\left(x+1\right)^2\)

f)

\(=y\left(x+y\right)-\left(x+y\right)\)

\(=\left(y-1\right)\left(x+y\right)\)

18 tháng 8 2020

a,2x3+3x2+2x+3

=(2x3+2x)+(3x2+3)

=2x(x2+1)+3(x2+1)

=(x2+1)(2x+3)

b,a2-ab+a-b

=(a2-ab)+(a-b)

=a(a-b)+(a-b)

=(a-b)(a+1)

c,2x2+4x+2-2y2

=2(x2+2x+1-y2)

=2[(x2+2x+1)-y2 ]

=2[(x+1)2-y2 ]

=2(x+1-y)(x+1+y)

d,x4-2x3+10x2-20x

=(x4-2x3)+(10x2-20x)

=x3(x-2)+10x(x-2)

=(x-2)(x3+10x)

=(x-2)[x(x2+10)]

e,x3+2x2+x

=x(x2+2x+1)

=x(x+1)2

f,xy+y2-x-y

=(xy+y2)-(x-y)

=y(x+y)-(x+y)

=(x+y)(y-1)

\(15\cdot17\cdot19\cdot21\cdot...\cdot2019\cdot2021\)

\(=\overline{...5}\cdot\overline{...5}=\overline{...25}\) ( vì số đó to quá nên tính hai chữ số cuối cùng )