Tìm giá trị nhỏ nhất của biểu thức:
a,P=x2-5x
b,Q=x2+2y2+2xy-2x-6y+2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) \(x+5x^2=0\)
\(\Leftrightarrow x\left(1+5x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+5x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}\)
b) \(x\left(x-1\right)=x-1\)
\(\Leftrightarrow x^2-x-x+1=0\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
c) \(5x\left(x-1\right)=1-x\)
\(\Leftrightarrow5x\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{5}\end{cases}}\)
d) \(\left(3x-4\right)^2-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(2x-5\right)\left(4x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{4}\end{cases}}\)
\(a,x+5x^2=0< =>x\left(5x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=0\\5x+1=0\end{cases}< =>\orbr{\begin{cases}x=0\\5x=-1\end{cases}< =>\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}}}\)
\(b,x\left(x-1\right)=x-1< =>x^2-x=x-1\)
\(< =>x^2-x-x+1=0< =>x\left(x-1\right)-\left(x-1\right)=0\)
\(< =>\left(x-1\right)\left(x-1\right)=0< =>x=1\)
\(c,5x\left(x-1\right)=1-x< =>5x^2-5x=1-x\)
\(< =>5x^2-5x+x-1=0< =>5x^2-4x-1=0\)
\(< =>5x^2-5x+x-1=0< =>5x\left(x-1\right)+x-1=0\)
\(< =>\left(5x+1\right)\left(x-1\right)=0< =>\orbr{\begin{cases}5x+1=0\\x-1=0\end{cases}}\)
\(< =>\orbr{\begin{cases}5x=-1\\x=1\end{cases}< =>\orbr{\begin{cases}x=-\frac{1}{5}\\x=1\end{cases}}}\)
\(d,\left(3x-4\right)^2-\left(x+1\right)^2=0\)
\(< =>9x^2-24x+16-x^2-2x-1=0\)
\(< =>8x^2-26x+15=0< =>8\left(x^2-\frac{13}{4}x+\frac{169}{64}\right)-\frac{2082}{64}=0\)
\(< =>\left(x-\frac{13}{8}\right)^2=\frac{2082}{512}=\frac{2082}{16\sqrt{2}}\)
\(< =>\orbr{\begin{cases}x-\frac{13}{8}=\frac{\sqrt{2082}}{4\sqrt[4]{2}}\\x-\frac{13}{8}=-\frac{\sqrt{2082}}{4\sqrt[4]{2}}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{13}{8}+\frac{\sqrt{2082}}{4\sqrt[4]{2}}\\x=\frac{13}{8}-\frac{\sqrt{2082}}{4\sqrt[4]{2}}\end{cases}}\)(nghiệm vô tỉ)
Không ai đổ rượu mới vào bầu da cũ, nếu vậy rượu mới làm nứt bầu ra; rượu chảy mất và bầu cũng phải hư đi. Song rượu mới phải đổ vào bầu mới. Lại cũng không ai uống rượu cũ lại đòi rượu mới; vì người nói rằng: Rượu cũ ngon hơn.
học tốt!!!
Bạn đã quá quen với câu ca "Tháng tám mùa thu lá rơi vàng chưa nhỉ?" trong bài hát Có phải em mùa thu Hà Nội.(1) Ngoài cảm xúc lãng đãng, lãng mạn thì đây cũng chính là lời nhắc về thời gian lập thu.(2) Trong lịch trình 4 mùa Xuân - Hạ - Thu - Đông, mùa thu bắt đầu từ tháng 8 và kết thúc vào tháng 10 hàng năm.(3) Mùa thu bao gồm 6 tiết khi: tiết lập thu, tiết xử thử, tiết bạch lộ, tiết thu phân, tiết hàn lộ, tiết sương giáng.(4) Những buổi sáng mùa thu ẩn chứa một điều gì đó thật quyến rũ, hồi hộp lạ thường.(5) Đứng trước mùa thu nghe âm thanh ríu rít của cuộc sống lòng ngập tràn niềm tự hào, hân hoan.(6) Không còn cái buồn hiu hắt, không còn cái “run rẩy”, cái “đìu hiu”, cái “xao xác hơi may”.(7) Trời thu giờ đây được thay áo mới. Cảnh vật dường như cũng biết “nói cười”.(8) Niềm vui nối liền niềm vui được thể hiện trong từng câu, từng chữ.(9) Mà đó đâu chỉ là niềm vui của riêng nhà thơ đó còn là niềm vui vô bờ bến của dân tộc, của nhân dân ta sau ngày cách mạng tháng Tám thành công.(10) Giữa tiết trời mùa thu sang, đọc lại những vần thơ mùa thu, ngắm nhìn đất nước thân yêu trong sắc thắm trời xanh, từ đồng ruộng, nhà máy, sông biển, núi đồi chúng ta càng thêm thấm thía những thành quả lớn lao mà cuộc cách mạng tháng Tám 1945 đã mang lại.(11) Mùa thu, mùa của những kỷ niệm, hồi ức không quên, mùa no ấm đang về...(12)
khoan đã!!!! đây là tiếng việt sao lại là đề tiếng anh??? :D
\(S_{MNP}=S_{ABCD}-\left(S_{MNB}+S_{AMPD}+S_{CNP}\right)\) (*)
\(S_{AMPD}=\frac{\left(AM+DP\right)xAD}{2}=\frac{\left(AM+DP\right)x10}{2}=5xAM+5xDP\)
\(S_{CNP}=\frac{CPxCN}{2}=\frac{5xCP}{2}\)
\(S_{AMPD}+S_{CNP}=5xAM+5xDP+\frac{5xCP}{2}=\frac{10xAM+10xDP+5xCP}{2}=\)
\(=\frac{10xAM+5x\left(DP+CP\right)+5xDP}{2}=\frac{10xAM+5xCD+5xDP}{2}\)(**)
Từ (*) ta thấy \(S_{MNP}\) phụ thuộc vào \(S_{AMPD}+S_{CNP}\) (Do \(S_{ABCD};S_{MNB}\) không thay đổi)
\(\Rightarrow S_{MNP}\) nhỏ nhất khi (**) lớn nhât và \(S_{MNP}\) lớn nhất khi (**) nhỏ nhất
(**) lớn nhất khi DP lớn nhất, DP lớn nhất khi P trùng với C
(**) nhỏ nhất khi DP nhỏ nhất, DP nhỏ nhất khi P trùng với D
Đến đây bài toán đã tường minh bạn tự làm nốt nhé
a) \(\left(x-6\right)^3=\left(x-6\right)^2\Leftrightarrow\orbr{\begin{cases}x-6=1\Leftrightarrow x=7\\x-6=0\Leftrightarrow x=6\end{cases}}\)
b) \(\left(7.x-11\right)^3=2^5.5^2+200\)
\(\Leftrightarrow\left(7.x-11\right)^3=800+200\)
\(\Leftrightarrow\left(7.x-11\right)^3=1000\)
\(\Leftrightarrow\left(7.x-11\right)^3=10^3\)
\(\Leftrightarrow7x-11=10\Leftrightarrow7x=21\Leftrightarrow x=3\)
c) \(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\)
\(\Leftrightarrow3+2^{x-1}=24-\left[4^2-3\right]\)
\(\Leftrightarrow3+2^{x-1}=24-13\)
\(\Leftrightarrow3+2^{x-1}=11\)
\(\Leftrightarrow2^{x-1}=8\Leftrightarrow2^{x-1}=2^3\Leftrightarrow x-1=3\Leftrightarrow x=4\)
a)\(3^x.3=243\Leftrightarrow3^x=81\Leftrightarrow3^x=3^4\Leftrightarrow x=4\)
b) \(2^x.16^2=1024\Leftrightarrow2^x.256=1024\Leftrightarrow2^x=4\Leftrightarrow2^x=2^2\Leftrightarrow x=2\)
c) \(64:4^x=16^8\Leftrightarrow4^x=67108864\Leftrightarrow4^x=4^{13}\Leftrightarrow x=13\)
d) \(2^x=16\Leftrightarrow2^x=2^4\Leftrightarrow x=4\)
1:(sri lanka/export/coffee? no,it/do.It /export/tea)
Does sri Lanka export from coffee ? No , it doesn't . It exports from tea.
2:(potatoes/grow/on bushes? no,they/do.They/grow/in the ground)
Do potatoes grow on bushes ? No , they don't . They grow in the ground.
* Xong rồi nha bạn :)))
\(P=\frac{\sqrt{x}-1}{\sqrt{x}+9}=\frac{\sqrt{x}+9-10}{\sqrt{x}+9}=1-\frac{10}{\sqrt{x}+9}\)
Để \(\sqrt{p}< \frac{1}{3}\)thì\(P< \frac{1}{9}\)hay\(1-\frac{10}{\sqrt{x}+9}< \frac{1}{9}\Leftrightarrow\frac{8}{9}< \frac{10}{\sqrt{x}+9}\Leftrightarrow\frac{10}{11,25}< \frac{10}{\sqrt{x}+9}\Leftrightarrow\sqrt{x}+9>11,25\)
\(\Leftrightarrow\sqrt{x}>2,25\Leftrightarrow x>\frac{81}{16}\)
Bài làm:
a) \(P=x^2-5x=\left(x^2-5x+\frac{25}{4}\right)-\frac{25}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\le-\frac{25}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x=\frac{5}{2}\)
Vậy \(Min_P=-\frac{25}{4}\Leftrightarrow x=\frac{5}{2}\)
a) P = x2 - 5x
= ( x2 - 5x + 25/4 ) - 25/4
= ( x - 5/2 )2 - 25/4
( x - 5/2 )2 ≥ 0 ∀ x => ( x - 5/2 )2 - 25/4 ≥ -25/4
Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2
=> MinF = -25/4 <=> x = 5/2
b) Q = x2 + 2y2 + 2xy - 2x - 6y + 2015
= ( x2 + 2xy + y2 - 2x - 2y + 1 ) + ( y2 - 4y + 4 ) + 2010
= [ ( x + y )2 - 2( x + y ) + 12 ] + ( y - 2 )2 + 2010
= ( x + y - 1 )2 + ( y - 2 )2 + 2010
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x,y\\\left(y-2\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y-1=0\\y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
=> MinQ = 2010 <=> x = -1 , y = 2