Cho \(f\left(x\right)=x^2+ax+b\) thoả mãn:
\(f\left(1\right)=1,f\left(0\right)>3\)
\(CMR:\)Phương trình \(f\left(x\right)=x\)có hai nghiệm phân biệt.
Biện luận số nghiệm của phương trình: \(f\left(f\left(x\right)\right)=x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(x+\sqrt{\frac{5}{x^2+2x\sqrt{5}+5}}\)
\(=x+\frac{\sqrt{5}}{\sqrt{\left(x+\sqrt{5}\right)^2}}\)
\(=x+\frac{\sqrt{5}}{x+\sqrt{5}}\)
\(=\frac{x^2+x\sqrt{5}+\sqrt{5}}{x+\sqrt{5}}\)
a, Hàng đon vị: 3
b, Chũ số thập phân thú hai:3,14
c, Chữ số thập phân thứ tư:3, 1415
Nếu đề là rút gọn G thì...
đk: \(x\ge0;x\ne1\)
Ta có:
\(G=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{4\sqrt{x}}{x+\sqrt{x}+1}-\frac{2\sqrt{x}+1}{x\sqrt{x}-1}\right).\left(\sqrt{x}+\frac{2\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(G=\frac{\left(x+\sqrt{x}+1\right)\sqrt{x}-4\left(\sqrt{x}-1\right)\sqrt{x}-2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}-1\right)\sqrt{x}+2\sqrt{x}+1}{\sqrt{x}-1}\)
\(G=\frac{x\sqrt{x}+x+\sqrt{x}-4x+4\sqrt{x}-2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{x-\sqrt{x}+2\sqrt{x}+1}{\sqrt{x}-1}\)
\(G=\frac{x\sqrt{x}-3x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
\(G=\frac{\left(\sqrt{x}-1\right)^3.\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2.\left(x+\sqrt{x}+1\right)}=\sqrt{x}-1\)
a) 9x2 + 25 - 12xy + 5y2 - 10y
= ( 9x2 - 12xy + 4y2 ) + ( y2 - 10y + 25 )
= ( 3x - 2y )2 + ( y - 5 )2
b) 13x2 + 4x + 12xy + 4y2 + 1
= ( 9x2 + 12xy + 4y2 ) + ( 4x2 + 4x + 1 )
= ( 3x + 2y )2 + ( 2x + 1 )2
c) x2 + 20 + 9y2 + 8x - 12y
= ( x2 + 8x + 16 ) + ( 9y2 - 12y + 4 )
= ( x + 4 )2 + ( 3y - 2 )2
consumption : tiêu dùng
illegal: bất hợp pháp
hoover scooter: hoover scooter:
chaos: sự hỗn loạn
HỌC TỐT!!!
\(\left(\frac{2x}{7-5}\right)\div\left(-8\right)=0.75\)
\(x=\frac{3}{4}\times\left(-8\right)\)
\(x=-6\)
(\(\frac{2x}{7}-5\)):(-8)=0,75
<=>\(\frac{2x}{7}-5\)=-6<=>\(\frac{2x}{7}\)=-1<=>2x:7=-1
<=>2x=-7<=>x=-7/2
\(\frac{2x}{7}-5\)\(\frac{2x}{7}-5\)