tìm giá trị của x để M>-6:M=\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F
a, Xét hai tam giác vuông ABH và tam giác vuông ACH có :
góc AHB = góc AHC = 90độ
AB = AC ( vì tam giác ABC cân tại A )
cạnh AH chung
Do đó : tam giác ABH = tam giác ACH ( cạnh huyền - cạnh góc vuông )
=> HB = HC ( cạnh tương ứng )
và góc BAH = góc CAH ( góc tương ứng )
b,Xét tam giác AHE và tam giác AHF có :
góc AEH = góc AFH = 90độ
cạnh AH chung
góc HAE = góc HAF ( theo câu a )
Do đó ; tam giác AHE = tam giác AHF ( cạnh huyền - góc nhọn )
=> AE = AF ( cạnh tương ứng )
=> tam giác AEF cân tại A
=> góc AEF = góc AFE = \(\frac{180^0-\widehat{A}}{2}\) ( 1 )
Vì tam giác ABC là tam giác cân nên :
góc ABC = góc ACB = \(\frac{180^0-\widehat{A}}{2}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : góc AEF = góc AFE = góc ABC = góc ACB
mà góc AEF = góc ABC và ở vị trí đồng vị
=> EF // BC .
Học tốt
dễ mà bạn :))) gáy tí , sai thì thôi
\(P=\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{z^3}{\left(1+z\right)\left(1+x\right)}\)
\(=\frac{x^3\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}+\frac{y^3\left(1+x\right)}{\left(1+y\right)\left(1+x\right)\left(1+z\right)}+\frac{z^3\left(1+y\right)}{\left(1+x\right)\left(1+z\right)\left(1+y\right)}\)
\(=\frac{x^3\left(1+z\right)+y^3\left(1+x\right)+z^3\left(1+y\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{3\sqrt[3]{x^3y^3z^3\left(1+x\right)\left(1+y\right)\left(1+z\right)}}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
đến đây áp dụng BĐT phụ ( 1+a ) ( 1+b ) ( 1+c ) >= 8abc
EZ :)))
Gọi số cần tìm là a ; (a > 0)
Ta có : \(\hept{\begin{cases}a:9\text{ dư 7}\\a:10\text{ dư 8}\\a:12\text{ dư 10}\end{cases}}\Rightarrow\hept{\begin{cases}a+2⋮9\\a+2⋮10\\a+2⋮12\end{cases}}\Rightarrow a+2\in BC\left(9;10;12\right)\)
Mà a nhỏ nhất
=> \(a+2\in BCNN\left(9;10;12\right)\)
Ta có 9 = 32
10 = 2.5
12 = 22.3
=> BCNN(9;10;12) = 32 . 22,5 = 180
=> a + 2 = 180
=> a = 178
\(A=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{19.20}{2}}\)
=> \(A=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{19.20}\)
=> \(\frac{A}{2}=\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
=> \(\frac{A}{2}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
=> \(\frac{A}{2}=\frac{1}{3}-\frac{1}{20}\)
=> \(\frac{A}{2}=\frac{20-3}{20.3}\)
=> \(\frac{A}{2}=\frac{17}{60}\)
=> \(A=\frac{17}{30}\)
VẬY \(A=\frac{17}{30}\)
Ta có :\(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+19}\)
\(=\frac{1}{3\times4}\times2+\frac{1}{4\times5}\times2+...+\frac{1}{19\times20}\times2\)
\(=2\times\left(\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{19\times20}\right)=2\times\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\times\left(\frac{1}{3}-\frac{1}{20}\right)=2\times\frac{17}{60}=\frac{17}{30}\)
a) 70=2.5.7
117=117.1
Suy ra ƯCNN(70,117)=2.5.7.117=8190
Vậy Ư(8190)=UCNN(70,117)
Suy ra mình đã làm sai và mik thấy tự hào về mik khi làm giỏi như vậy
Đặt BT trên là A
Ta có :
\(A^2=5-\sqrt{21}+5+\sqrt{21}+2\sqrt{(5-\sqrt{21})\left(5+\sqrt{21}\right)}\)
\(=10+2\sqrt{25-21}\)
\(=10+2.\sqrt{4}=10+2.2=14\)
\(\Rightarrow A=\sqrt{14}\)
Ta có:
\(\sqrt{5-\sqrt{21}}+\sqrt{5+\sqrt{21}}\)
\(=\sqrt{\left(\sqrt{5-\sqrt{21}}+\sqrt{5+\sqrt{21}}\right)^2}\)
\(=\sqrt{5-\sqrt{21}+2\sqrt{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}+5+\sqrt{21}}\)
\(=\sqrt{10+2\sqrt{25-21}}\)
\(=\sqrt{10+2\sqrt{4}}=\sqrt{10+4}=\sqrt{14}\)
a) \(\left(x+5\right)^2-\left(x-5\right)^2-20x+2\)
\(=x^2+10x+25-x^2+10x-25-20x+2\)
\(=2\) không phụ thuộc vào \(x\)
b) \(\left(x+3\right)\left(x-5\right)-\left(x-1\right)^2\)
\(=x^2-2x-15-x^2+2x-1\)
\(=-16\) không phụ thuộc vào \(x\)
c) \(\left(3x+2\right)\left(x-2\right)-x\left(3x-5\right)+8\)
\(=3x^2-4x-4-3x^2+5x+8\)
\(=x+8\) câu này đề sai.
d) \(2.\left(3x+1\right)\left(2x+5\right)-6x.\left(2x+4\right)-10\left(x-1\right)\)
\(=2.\left(6x^2+17x+5\right)-\left(12x^2+24x\right)-10x+10\)
\(=12x^2+34x+10-12x^2-24x-10x+10\)
\(=20\) không phụ thuộc vào \(x\)
a) ( x + 5 )2 - ( x - 5 )2 - 20x + 2
= x2 + 10x + 25 - ( x2 - 10x + 25 ) - 20x + 2
= x2 + 10x + 25 - x2 + 10x - 25 - 20x + 2
= 2 ( đpcm )
b) ( x + 3 )( x - 5 ) - ( x - 1 )2
= x2 - 2x - 15 - ( x2 - 2x + 1 )
= x2 - 2x - 15 - x2 + 2x - 1
= -16 ( đpcm )
c) ( 3x + 2 )( x - 2 ) - x( 3x - 5 ) + 8
= 3x2 - 4x - 4 - 3x2 + 5x + 8
= x + 4 ( lỗi đề )
d) 2( 3x + 1 )( 2x + 5 ) - 6x( 2x + 4 ) - 10( x - 1 )
= 2( 6x2 + 17x + 5 ) - 12x2 - 24x - 10x + 10
= 12x2 + 34x + 10 - 12x2 - 24x - 10x + 10
= 20 ( đpcm )
\(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\)
\(\Leftrightarrow x=-2\)
Bài làm:
Ta có: \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2-26=0\)
\(\Leftrightarrow-13x=26\)
\(\Rightarrow x=-2\)
ĐKXĐ: x > 0; x \(\ne\)1
M = \(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
M = \(\frac{\sqrt{x}.\sqrt{x}-1}{2\sqrt{x}}\cdot\frac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
M = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}}\cdot\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
M = \(\frac{-4x}{2\sqrt{x}}=-2\sqrt{x}\)
M > -6 => \(-2\sqrt{x}+6>0\)
<=> \(-2\left(\sqrt{x}-3\right)>0\) <=> \(\sqrt{x}-3< 0\) <=> \(x< 9\)
kết hợp với đk => 0 < x < 9 và x khác 1