Tìm x biết:
a/ 5(x+y)+2=3xy
b/ 2(x+y) =5xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x + 2x +4 = 272
(2 + 2)x + 4 = 272
4x + 4 = 272
4x = 272 - 4
4x = 268
Lời giải:
a. Xét hiệu $\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{(a-b)^2}{ab}\geq 0$ với mọi $a,b\in\mathbb{N}^*$
$\Rightarrow \frac{a}{b}+\frac{b}{a}\geq 2$
Dấu "=" xảy ra khi $(a-b)^2=0$ hay $a=b$.
b.
Xét hiệu $\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{a+b}{ab}-\frac{4}{a+b}$
$=\frac{(a+b)^2-4ab}{ab(a+b)}=\frac{(a-b)^2}{ab(a+b)}\geq 0$ với mọi $a,b\in\mathbb{N}^*$
$\Rightarrow \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}$
Dấu "=" xảy ra khi $a-b=0$ hay $a=b$
Lời giải:
Vì $(x+2)(3-x)>0$ nên xảy ra 2 TH:
TH1: $x+2>0$ và $3-x>0$
$\Rightarrow x>-2$ và $x<3$
$\Rightarrow -2< x< 3$
$\Rightarrow x\in \left\{-1; 0; 1; 2\right\}$
TH2: $x+2<0$ và $3-x<0$
$\Rightarrow x<-2$ và $x>3$
$\Rightarrow -2> x> 3$ (vô lý - loại)
Vậy $x\in \left\{-1; 0; 1; 2\right\}$
Ta có:370=(37).10=2110 chia hết cho 7
570=(57).10=3510 chia hết cho 7
=>370+570 chia hết cho 7
Lời giải:
$10^6-5^7=2^6.5^6-5^7=5^6(2^6-5)=5^6.59\vdots 59$
Ta có đpcm.
** Điều kiện: $x,y$ là số nguyên.
Lời giải:
a. $5(x+y)+2=3xy$
$\Rightarrow 5x+5y+2-3xy=0$
$\Rightarrow x(5-3y)+5y+2=0$
$\Rightarrow 3x(5-3y)+15y+6=0$
$\Rightarrow 3x(5-3y)+5(3y-5)+31=0$
$\Rightarrow (3x-5)(5-3y)=-31$
$\Rightarrow (3x-5)(3y-5)=31$
Do $x,y$ là số nguyên nên $3x-5, 3y-5$ là số nguyên. Mà tích của chúng bằng 31 nên ta xét các TH sau:
TH1: $3x-5=1, 3y-5=31\Rightarrow x=2; y=12$
TH2: $3x-5=-1, 3y-5=-31\Rightarrow x=\frac{4}{3}$ (loại)
TH3: $3x-5=31, 3y-5=1\Rightarrow x=12; y=2$
TH4: $3x-5=-31, 3y-5=-1\Rightarrow x=\frac{-26}{3}$ (loại)
Vậy $(x,y)=(2,12), (12,2)$
b/
$2(x+y)=5xy$
$\Rightarrow 2x+2y-5xy=0$
$\Rightarrow x(2-5y)+2y=0$
$\Rightarrow 5x(2-5y)+10y=0$
$\Rightarrow 5x(2-5y)-2(2-5y)=-4$
$\Rightarrow (2-5y)(5x-2)=-4$
$\Rightarrow (5y-2)(5x-2)=4$
Do $x,y$ nguyên nên $5y-2, 5x-2$ là số nguyên. Mà tích của chúng bằng 4 nên ta xét các TH sau:
TH1: $5y-2=1, 5x-2=4\Rightarrow y=\frac{3}{5}$ (loại)
TH2: $5y-2=-1, 5x-2=-4\Rightarrow y=\frac{1}{5}$ (loại)
TH3: $5y-2=4, 5x-2=1\Rightarrow y=\frac{6}{5}$ (loại)
TH4: $5y-2=-4, 5x-2=-1\Rightarrow y=\frac{-2}{5}$ (loại)
TH5: $5y-2=2, 5x-2=2\Rightarrow y=\frac{4}{5}$ (loại)
TH6: $5y-2=-2, 5x-2=-2\Rightarrow x=y=0$