Khai triển các hằng đẳng thức sau:
a) (x + 2y)2
b)(3x-1/8y)2
c)(-6x-2/5)2
d) (xy2 + 1).(xy2 – 1)
e) (x – y)2.(x + y)2
f)(1/2x-1/3y-1)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(3\left(3-2x^2\right)+3x\left(2x-1\right)=9\)
\(\Leftrightarrow9-6x^2+6x^2-3x=9\)
\(\Leftrightarrow3x=0\)
\(\Rightarrow x=0\)
\(3\left(2-2x^2\right)+3x\left(2x-1\right)=9\)
\(\Leftrightarrow3\left(2-2x^2+2x^2-x\right)=9\)
\(\Leftrightarrow2-x=3\)
\(\Leftrightarrow x=-1\)
mình nghĩ làm chọn đáp án là: C
Nếu đúng thì k cho mình nha!
Chúc học tốt!
He said he ____________ to the party.
A. had rather not go B. would rather did not go
C. would rather not go D. had better not going
\(A=5-8x+x^2=-8x+x^2+6-11\)
\(=\left(x-4\right)^2-11\)
Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy Amin = - 11 <=> x = 4
\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)
\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Bmax = 9 <=> x = - 1
BĐT CẦN CM <=> \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge a+b+c\)
<=> \(a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\ge a+b+c\)
<=> \(2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\ge0\)
<=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge0\)
THỰC TẾ LÀ \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}>0\) nhé do \(a;b;c>0\) mà !!!!!!
Bình phương 2 vế BĐT , ta có :
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge a+b+c\)
\(\Leftrightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\ge a+b+c\)
\(\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ac}>0\left(\forall a,b,c>0\right)\)
=) ĐPCM
1. It came as no surprise to me to hear about Sophia's promotion.
4. The Prime Minister's sudden illness resulted in his resignation.
3. I don't think you should say anything about John's behaviour to his mother.
2. I am at a loss to understand why __(không biết) resigned from his job.
Cái phần CMR: \(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\le3\left(b-2\right)\) phải là giả thiết chứ nhỉ ??
ĐỀ GỐC BÀI NÀY LÀ ĐỀ CỦA CHUYÊN HƯNG YÊN NHÉ, THẦY CẬU RA LẠI THÔI !!!!!
DO: \(a\ge1;b\ge2;c\ge3\Rightarrow a-1;b-2;c-3\ge0\)
ĐẶT: \(a-1=x;b-2=y;c-3=z\)
=> \(gt\Leftrightarrow\hept{\begin{cases}x;y;z\ge0\\x^2+y^2+z^2\le3y\end{cases}}\)
=> \(a=x+1;b=y+2;c=z+3\)
=> \(P=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}\)
TA ÁP DỤNG 2 BĐT SAU: \(\hept{\begin{cases}\left(x+1\right)^2\le2\left(x^2+1\right)\\\left(z+3\right)^2\le4\left(z^2+3\right)\end{cases}}\)
=> \(P\ge\frac{1}{2\left(x^2+1\right)}+\frac{8}{4\left(z^2+3\right)}+\frac{4}{\left(y+2\right)^2}\)
=> \(P\ge\frac{1}{2\left(x^2+1\right)}+\frac{4}{2\left(z^2+3\right)}+\frac{4}{\left(y+2\right)^2}\)
=> \(P\ge\frac{\left(1+2\right)^2}{2\left(x^2+z^2\right)+8}+\frac{4}{\left(y+2\right)^2}\) (BĐT CAUCHY - SCHWARZ)
=> \(P\ge\frac{9}{2\left(x^2+z^2\right)+8}+\frac{4}{\left(y+2\right)^2}\)
MÀ: \(x^2+z^2\le3y-y^2\) (gt)
=> \(P\ge\frac{9}{2\left(3y-y^2\right)}+\frac{4}{\left(y+2\right)^2}=\frac{9}{6y-2y^2}+\frac{4}{\left(y+2\right)^2}\)
TA SẼ CHỨNG MINH \(\frac{9}{6y-2y^2+8}+\frac{4}{\left(y+2\right)^2}\ge1\)
<=> \(\left(y-2\right)^2\left(2y^2+10y+9\right)\ge0\) (*)
(CHỖ NÀY CẬU QUY ĐỒNG MẪU SỐ, RÚT GỌN RỒI PHÂN TÍCH NHÂN TỬ SẼ RA ĐƯỢC NHƯ THẾ NÀY, MÌNH LÀM TẮT NHA)
DO: \(\hept{\begin{cases}\left(y-2\right)^2\ge0\forall y\\2y^2+10y+9\ge9>0\left(y\ge0\right)\end{cases}}\)
VẬY BĐT (*) LUÔN ĐÚNG !!!!!!
=> \(P\ge1\)
DẤU "=" XẢY RA <=> \(x=z=1;y=2\)
<=> \(a=2;b=4;c=4\)
a) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)
b) \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)
c) \(\left(-6x-\frac{2}{5}\right)^2=36x^2+\frac{24}{5}x+\frac{4}{25}\)
d) \(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)
e) \(\left(x-y\right)^2\left(x+y\right)^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)
f) \(\left(\frac{1}{2}x-\frac{1}{3}y-1\right)^2=\frac{1}{4}x^2+\frac{1}{9}y^2+1-\frac{1}{3}xy-x+\frac{2}{3}y\)
a, \(\left(x+2y\right)^2=x^2+4xy+4y^2\)
b, \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)
e, \(\left(x-y\right)^2\left(x+y\right)^2=x^4-2x^2y^2+y^4\)