\(2\left(\cos^8x-\sin^8x\right)-\cos^32x\)
rút gọn giùm em ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(9 15.18.24): (5.9.12)=12
phần dưới tớ không hiểu lắm!
học tốt~~~
Ta có :\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)
=> \(\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}\)
Khi đó A = 2019 - 1/5 + 5 = 2023,8
\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}}\)
Khi đó \(A=2019-\frac{1}{5}+5=2013,8\)
1. \(n\in\left\{1;2;3;4;5;...\right\}\)
2. \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1009}\)
\(\Rightarrow A=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)
Ta có :
\(\left(A-B-1\right)^{2019}=\left(\frac{1}{1010}+...+\frac{1}{2019}-\left(\frac{1}{1010}+...+\frac{1}{2019}\right)-1\right)^{2019}\)
\(=\left(-1\right)^{2019}=-1\)
a hoặc b hoặc c là 1
còn lại là 0
vì a ngũ 2 + b ngũ 2 + c ngũ 2 = a ngũ 3 + b ngũ + c ngũ 3=1 mà 1= 1+0+0 nên ta có như kia(không thể là số thập phân vì số thập phân khi ngũ khác nhau thì tổng khác nhau mà cái này tổng bằng nhau)
- 0 ngũ bao nhiêu cx bằng 0 , 1 ngũ bao nhiêu cx bằng 1
mà a hay hay c bằng 1 hoặc ko đều ko quan trọng chỉ cần bt 1 số là 1 còn 2 số còn lại là 0
nên tổng a ngũ 2 + b ngũ 9+ c ngũ 2019 = bằng 1(0 ngũ bao nhiêu cx bằng 0 , 1 ngũ bao nhiêu cx bằng 1)
chúc học tốt
Cách trình bày như nào ạ? tớ thấy nếu thử như vậy không hợp lí lắm, cậu có cách khác không ạ!?
giúp tớ với!
Lập phương trình đường thẳng d : y = a x + b biết nó song song với d : y = x-1 và điqua P (-2 ; -5 )
d : y = ax + b
d song song d : y = x - 1
Suy ra a =1 ; b khác -1
d : y = x + b
d đi qua p ( -2 ; -5 )
Suy ra P thuộc d
Thế P ( -2 ; -5 ) vào d
d : y = x + b
-5 = -2 + b
b = -5 - (-2)
b = -3
Vậy d : y = x - 3
để d1 song song d2 thì :
\(\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\)
Suy ra :
\(\hept{\begin{cases}m^2+1=10\\-3\ne-m+1\end{cases}}\)
\(\hept{\begin{cases}m^2=9\\-m\ne-4\end{cases}}\)
\(\hept{\begin{cases}m=\pm3\\m\ne4\end{cases}}\)
Vậy \(\orbr{\begin{cases}m=3\\m=-3\end{cases}}\) thỏa đề bài