tuyển ny nè a là nam
Các e ơi vào đây kb với anh đi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^5+b^5=4.(c^5-+d^5)
<=> a^5+b^5+c^5+d^5 = 5.(c^5+d^5) chia hết cho 5
Xét : a^5-a = a(a-2).(a+2).(a-1).(a+1)+5.a.(a-1).(a+1) chia hết cho 5
Tương tự : b^5-b ; c^5-c ; d^5-d đều chia hết cho 5
=> a^5+b^5+c^5+d^5-(a+b+c+d) chia hết cho 5
Mà a^5+b^5+c^5+d^5 chia hết cho 5
=> a+b+c+d chia hết cho 5
Tk mk nha
Áp dụng BĐT bu-nhi-a, ta có
\(7D=7\left(x^2+y^2+3z^2\right)^2\ge\left(\sqrt{3}x+\sqrt{3}y+\sqrt{3}z\right)^2=3\left(x+y+z\right)^2=3\)
=>\(D\ge\frac{7}{3}\)
Dấu = xảy ra <=>\(\hept{\begin{cases}x=y=\frac{3}{7}\\z=\frac{1}{7}\end{cases}}\)
^_^
Ta có BĐT cần chứng minh
<=>\(a^3+b^3\ge\frac{\left(a+b\right)^3}{4}\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\)
<=>\(a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)
Áp dụng BĐT cô-si, ta có \(a^3+a^3+b^3\ge3a^2b;b^3+b^3+a^3\ge3ab^2\Rightarrow a^3+b^3\ge a^2b+ab^2\)
=> BĐT cần chứng minh luôn đúng
^_^
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.