Tìm x, biết:
a) \(\left|3x+4\right|=2\left|2x-9\right|\)
b)\(\left|10x+7\right|< 37\)
c)\(\left|3-8x\right|\le19\)
d)\(\left|x+3\right|-2x=\left|x-4\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Đặt \(A=\sqrt{7-\sqrt{13}}-\sqrt{7+\sqrt{13}}\)
\(\Leftrightarrow A^2=\left(\sqrt{7-\sqrt{13}}-\sqrt{7+\sqrt{13}}\right)^2\)
\(=7-\sqrt{13}-2\sqrt{\left(7-\sqrt{13}\right)\left(7+\sqrt{13}\right)}+7+\sqrt{13}\)
\(=14-2\sqrt{49-13}\)
\(=14-2\sqrt{36}=14-2.6=14-12=2\)
\(\Rightarrow A=\sqrt{2}\)
Thay vào ta được:
\(\sqrt{7-\sqrt{13}}-\sqrt{7+\sqrt{13}}+\sqrt{2}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
Gọi thương là b,d
Có a:3 = c dư 1
a = 3c + 1
Có b: 3 = d dư 2
b = 3d + 2
Thay vào, ta được:
[(3c + 1)(3d + 2) + 2] : 3
[ 9cd + 6c + 3d + 2 + 2] : 3
[ 3(3cd + 2c + d) + 4] : 3
Vì 3 chia hết cho 3 nên 3(3cd + 2c + d) chia hết cho 3
Mà 4 chia 3 dư1
Suy ra 3(3cd + 2c + d) + 4 chia 3 dư 1
Vậy (ab + 2) chia 3 dư 1
The Mid-Autumn festival dates back to the Rice Civilization of the Red River delta, over 4,000 years ago. It is held on the 15th day on the 8th lunar month (often in late September or early October) in the middle of autumn and it is celebrated for a whole day. Besides the Tet Holiday, Mid-Autumn festival is one of the most famous festivals and it is a traditional celebration for Vietnamese children.
Children are provided with many nice lanterns - star lanterns, flower lanterns and diverse funny masks for special performance in the evening of the full moon. Everywhere is fallen in the active and colorful air. The main point of the Mid-Autumn is that children use the beautiful lanterns, wear funny masks, perform fantas lion dances and sing folklore songs in the house's grounds or on the streets when the moon is rising.
Then they will back home and enjoy moon cakes.Moon cakes are the specific cakes and are only on this festival. Moon cakes, which are made from flavor, meat, egg, dried fruit, pumpkin's seed, peanut, are so sweet and good tasting. Moon cakes symbolize Luck, Happiness, Health and Wealth on the Mid-Autumn day.d with many nice lanterns - star lanterns, flower lanterns and diverse funny masks for special performance in the evening of the full moon. Everywhere is fallen in the active and colorful air. The main point of the Mid-Autumn is that children use the beautiful lanterns, wear funny masks, perform fantas lion dances and sing folklore songs in the house's grounds or on the streets when the moon is rising.It's really funnny with them
You should attended one more time !
Bài làm:
Ta có: \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{10}\)(1)
Và \(\frac{y}{2}=\frac{z}{4}\Leftrightarrow\frac{y}{10}=\frac{z}{20}\) (2)
Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{10}=\frac{-2x+y-z}{-6+5-10}=\frac{-22}{-11}=2\)
=> \(\hept{\begin{cases}x=6\\y=10\\z=20\end{cases}}\)
Theo bài ra ta có : \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{10}\)(*)
\(\frac{y}{2}=\frac{z}{4}\Leftrightarrow\frac{y}{10}=\frac{z}{20}\)(**)
Từ (*) ; (**) ta có : \(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}=\frac{-2x+y-z}{-2.6+10-20}=-\frac{22}{-22}=1\)
: \(x=6;y=10;z=20\)
A B C D E F
Bài làm:
Từ D,E kẻ DE,CF vuông góc với AB \(\left(E,F\in AB\right)\)
Xét trong Δ vuông ADE tại D có góc A bằng 60 độ
=> \(\widehat{ADE}=30^0\)
Vì tam giác ADE có: \(\hept{\begin{cases}\widehat{A}=60^0\\\widehat{ADE}=30^0\\\widehat{AED}=90^0\end{cases}}\) => \(AE=\frac{AD}{2}=\frac{2}{2}=1\left(cm\right)\)
Tương tự tính được: \(BF=1\left(cm\right)\)
=> \(FE=AB-AE-BF=4,5-2=2,5\left(cm\right)\)
Vì DC // FE và DE // FC nên theo t/c đoạn chắn
=> DC = FE = 2,5 (cm)
Áp dụng định lý Pytago ta được: \(DE^2=AD^2-AE^2=2^2-1^2=3\left(cm\right)\)
=> \(DE=\sqrt{3}\left(cm\right)\)
Diện tích hình thang cân ABCD là: \(\frac{\left(AB+CD\right).DE}{2}=\frac{7\sqrt{3}}{2}\left(cm^2\right)\)
Giải
Kẻ DH vuông góc với AB
\(\sin\widehat{A}=\frac{DH}{AD}\)
\(\Leftrightarrow\sin60^o=\frac{DH}{2}\Rightarrow DH=\sqrt{3}\)
\(\cos A=\frac{AH}{AD}\)
\(AH=\cos60^o.2\)
\(\Rightarrow DC=AB-1-1=4,5-2=2,5\)
\(S\)ABCD=\(\frac{1}{2}.\sqrt{3}.\left(4,5+2,5\right)\)
\(=\frac{7\sqrt{3}}{2}\)
a) Ta có : \(\left|3x+4\right|=2\left|2x-9\right|\)
=> \(\orbr{\begin{cases}3x+4=2\left(-2x+9\right)\\3x+4=2\left(2x-9\right)\end{cases}}\Rightarrow\orbr{\begin{cases}3x+4=-4x+18\\3x+4=4x-18\end{cases}}\Rightarrow\orbr{\begin{cases}7x=14\\-x=-22\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=22\end{cases}}\)
=> \(x\in\left\{2;22\right\}\)
b) Ta có : \(\left|10x+7\right|< 37\)
=> -37 < 10x + 7 < 37
=> -44 < 10x < 30
=> -4,4 < x < 3
Vậy -4,4 < x < 3
c) |3 - 8x| \(\le\)19
=> \(-19\le3-8x\le19\)
=> \(\hept{\begin{cases}3-8x\ge-19\\3-8x\le19\end{cases}}\Rightarrow\hept{\begin{cases}22\ge8x\\-16\le8x\end{cases}}\Rightarrow\hept{\begin{cases}x\le\frac{11}{4}\\x\ge-2\end{cases}}\Rightarrow-2\le x\le\frac{11}{4}\)
d) Ta có |x + 3| - 2x = |x - 4| (1)
Nếu x < -3
=> |x + 3| = -(x + 3) = -x - 3
=> |x - 4| = -(x - 4) = -x + 4
Khi đó (1) <=> -x - 3 - 2x = - x + 4
=> -3x - 3 = - x + 4
=> -2x = 7
=> x = - 3,5 (tm)
Nếu \(-3\le x\le4\)
=> |x + 3| = x + 3
=> |x - 4| = -(x - 4) = -x + 4
Khi đó (1) <=> x + 3 - 2x = -x + 4
=> -x + 3 = -x + 4
=> 0x = 1 (loại)
Nếu x > 4
=> |x + 3| = x + 3
=> |x - 4| = x + 4
Khi đó (1) <=> x + 3 - 2x = x - 4
=> -x + 3 = x - 4
=> -2x = -7
=> x = 3,5 (loại)
Vậy x = -3,5