Tìm x, y biết:
x2 + (y - 1/10)4 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x O y 130 độ m z
a) Do OM là tia phân giác của \(\widehat{xOy}\)
=> \(\widehat{xOm}=\widehat{yOm}=\frac{\widehat{xOy}}{2}\)
=> \(\widehat{xOm}=\widehat{yOm}=\frac{130^o}{2}\)
=> \(\widehat{xOm}=\widehat{yOm}=65^o\)
Vậy \(\widehat{yOm}=65^o\)
b) Do \(\widehat{xOz}\)kề bù với \(\widehat{xOm}\):
=> \(\widehat{xOm}+\widehat{xOz}=180^o\)
=> \(65^o+\widehat{xOz}=180^o\)
=> \(\widehat{xOz}=180^o-65^o\)
=> \(\widehat{xOz}=115^o\)
Vậy \(\widehat{xOz}=115^o\)
Ta có: \(\left|a-c\right|< 3\); \(\left|b-c\right|< 2\)
\(\Rightarrow\left|a-c\right|+\left|b-c\right|< 3+2=5\)(1)
mà \(\left|a-c\right|+\left|b-c\right|=\left|a-c\right|+\left|c-b\right|\ge\left|a-c+c-b\right|=\left|a-b\right|\)(2)
Từ (1) và (2) \(\Rightarrow\left|a-b\right|\le\left|a-c\right|+\left|b-c\right|< 5\)
hay \(\left|a-b\right|< 5\)( đpcm )
Bg
a) Gọi số chẵn nhỏ nhất trong ba số chẵn liên tiếp là 2x (x \(\inℤ\))
=> Tổng ba số chẵn liên tiếp = 2x + (2x + 2) + (2x + 4)
=> 2x + (2x + 2) + (2x + 4) = 2x + 2x + 2 + 2x + 4
=> 2x + (2x + 2) + (2x + 4) = (2x + 2x + 2x) + (2 + 4)
=> 2x + (2x + 2) + (2x + 4) = 2.3x + 6
=> 2x + (2x + 2) + (2x + 4) = 6x + 6.1
=> 2x + (2x + 2) + (2x + 4) = 6.(x + 1) \(⋮\)6
=> Tổng ba số tự nhiên liên tiếp chia hết cho 6
=> ĐPCM
b) Bg
Tổng ba số lẻ liên tiếp luôn là một số lẻ
Mà 6 chẵn
=> Tổng của ba số lẻ liên tiếp không chia hết cho 6
=> ĐPCM
c) Bg
Ta có: a \(⋮\)b và b \(⋮\)c (a, b, c \(\inℤ\))
Vì a \(⋮\)b
=> a = by (bởi y \(\inℤ\))
Mà b \(⋮\)c
=> by \(⋮\)c
=> a \(⋮\)c
=> ĐPCM
d) Bg
Ta có: P = a + a2 + a3 +...+ a2n (a, n\(\inℕ\))
=> P = (a + a2) + (a3 + a4)...+ (a2n - 1 + a2n)
=> P = [a.(a + 1)] + [a3.(a + 1)] +...+ [a2n - 1.(a + 1)]
=> P = (a + 1).(a + a3 + a2n - 1) \(⋮\)a + 1
=> P = a + a2 + a3 +...+ a2n \(⋮\)a + 1
=> ĐPCM (Điều phải chứng mình)
Trả lời :
a, Do Om là tia phân giác của \(\widehat{xOy}\)
=> \(\widehat{xOm}=\widehat{yOm}=\widehat{\frac{xOy}{2}}=\frac{130^o}{2}=65^o\)
b, Do \(\widehat{xOz}\)kề bù với\(\widehat{xOm}\)
=> \(\widehat{xOz}+\widehat{xOm}=180^o\)
\(\Rightarrow\widehat{xOz}+65^o=180^o\)
\(\Rightarrow\widehat{xOz}=115^o\)
Bài làm :
Ta có:
\(x^2-y^2-z^2=0\)
\(\Leftrightarrow16x^2-16y^2-16z^2=0\)
\(\Leftrightarrow25x^2-9x^2+9y^2-25y^2-16z^2+30xy-30xy=0\)
\(\Leftrightarrow\left[\left(25x^2-30xy+9y^2\right)-16z^2\right]-\left(9x^2-30xy+25y^2\right)=0\)
\(\Leftrightarrow\left(5x-3y\right)^2-16z^2=\left(3x-5y\right)^2\)
\(\Leftrightarrow\left(5x-3y-4z\right)\left(5x-3y+4z\right)=\left(3x-5y\right)^2\)
=> Điều phải chứng minh
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) \(A=\sqrt{19+8\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
\(A=\sqrt{16+8\sqrt{3}+3}-\sqrt{3+2\sqrt{3}+1}\)
\(A=\sqrt{\left(4+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(A=4+\sqrt{3}-\sqrt{3}-1=3\)
b) \(B=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(B=\sqrt{25+10\sqrt{2}+2}-\sqrt{16+8\sqrt{2}+2}\)
\(A=\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\)
\(A=5+\sqrt{2}-4-\sqrt{2}=1\)
\(A=\sqrt{19+8\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+8\sqrt{3}+16}-\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot4+4^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}+1^2}\)
\(=\sqrt{\left(\sqrt{3}+4\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}+4\right|-\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}+4-\left(\sqrt{3}+1\right)\)
\(=\sqrt{3}+4-\sqrt{3}-1=3\)
\(B=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=\sqrt{2+10\sqrt{2}+25}-\sqrt{2+8\sqrt{2}+16}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot5+5^2}-\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot4+4^2}\)
\(=\sqrt{\left(\sqrt{2}+5\right)^2}-\sqrt{\left(\sqrt{2}+4\right)^2}\)
\(=\left|\sqrt{2}+5\right|-\left|\sqrt{2}+4\right|\)
\(=\sqrt{2}+5-\left(\sqrt{2}+4\right)\)
\(=\sqrt{2}+5-\sqrt{2}-4=1\)
Bài làm :
Ta có :
\(\left(8x-1\right)^{2n+1}=5^{2n+1}\)
\(\Leftrightarrow8x-1=5\)
\(\Leftrightarrow8x=5+1\)
\(\Leftrightarrow8x=6\)
\(\Leftrightarrow x=\frac{6}{8}=\frac{3}{4}\)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
x2 + ( y - 1/10 )4 = 0
\(\hept{\begin{cases}x^2\ge0\forall x\\\left(y-\frac{1}{10}\right)^4\ge0\forall y\end{cases}}\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x^2=0\\\left(y-\frac{1}{10}\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{1}{10}\end{cases}}\)
Vậy x = 0 ; y = 1/10
Bài làm:
Ta có: \(\hept{\begin{cases}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge\end{cases}}\left(\forall x,y\right)\)
=> \(x^2+\left(y-\frac{1}{10}\right)^4\ge0\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^2=0\\\left(y-\frac{1}{10}\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{1}{10}\end{cases}}\)