Cho tam giác ABC vuoog tại A, trung tuyến AM. Gọi N là điểm đối xứng với M qua AB
a) CMR: tg AMBN
b) Cho AB= 6cm, AC=8cm . Tinh diện tich tg AMBN?
c) Tam giac ABC có điều kiện gì để hình thoi AMBN la hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(ĐKXĐ\hept{\begin{cases}2-x\ne0\\2+x\ne0\end{cases}\Leftrightarrow x\ne\pm2}\)
b, Ta có: \(A=\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\)
\(=\frac{\left(2+x\right)^2}{\left(2-x\right)\left(2+x\right)}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\)
\(=\frac{4+4x+x^2+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\)
\(=\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}\)
\(=\frac{4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x}{x-2}\)
a) ĐKXĐ: \(\hept{\begin{cases}2-x\ne0\\x^2-4\ne0\\2+x\ne0\end{cases}}\)<=>\(\hept{\begin{cases}2-x\ne0\\2+x\ne0\\\left(x-2\right)\left(x+2\right)\ne0\end{cases}}\)<=>\(x\ne\pm2\)
b)\(A=\frac{2+x}{2-x}-\frac{4x}{x^2-4}-\frac{2-x}{2+x}\)
\(\Leftrightarrow A=\frac{2+x}{2-x}+\frac{4x}{4-x^2}-\frac{2-x}{2+x}\)
\(\Leftrightarrow A=\frac{\left(2+x\right)\left(2+x\right)}{\left(2-x\right)\left(2+x\right)}+\frac{4x}{\left(2-x\right)\left(2+x\right)}-\frac{\left(2-x\right)\left(2-x\right)}{\left(2+x\right)\left(2-x\right)}\)
\(\Leftrightarrow A=\frac{x^2+4x+4+4x-x^2+4x-4}{\left(2+x\right)\left(2-x\right)}\)
\(\Leftrightarrow A=\frac{12x}{\left(2+x\right)\left(2-x\right)}\)
Câu hỏi của Lê Vũ Anh Thư - Toán lớp 8 | Học trực tuyến
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
Do ABCD là hình thang cân nên:
AD = BC;
AC = BD;
Xét hai tam giác ADC và BCD, ta có:
AD = BC (gt)
AC = BD (gt)
DC cạnh chung
⇒ ΔADC = ΔBCD (c.c.c)
⇒ ΔECD cân tại E
⇒ EC = ED.
Mà AC = BD
⇒ AC – EC = BD – ED
hay EA = EB.
Vậy EA = EB, EC = ED.
Vì hình thang ABCD cân
AD = BC;
Ĉ = D̂
Xét hai tam giác vuông AED và BFC có:
AD = BC
Ĉ = D̂
⇒ ΔAED = ΔBFC (cạnh huyền – góc nhọn)
⇒ DE = CF.
A B C D E F
Vì tứ giác \(ABCD\)là hình thang cân
\(\Rightarrow\)\(\hept{\begin{cases}AD=BC\\\widehat{ADC}=\widehat{BCD}\end{cases}}\)
Xét \(\Delta AED\)vuông tại \(E\)và \(\Delta BFC\)vuông tại \(F\)có:
\(AD=BC\)( chứng minh trên )
\(\widehat{ADC}=\widehat{BCD}\)( chứng minh trên )
\(\Rightarrow\)\(\Delta AED\)vuông tại \(E\)\(=\) \(\Delta BFC\)vuông tại \(F\)( CH và GN )
\(\Rightarrow\)\(DE=CF\)( hai cạnh tương ứng )