cho a,b,c \(\in\)R thỏa mãn a+b+c=2018 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)
tính M=\(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là số sản phẩm tổ I hoàn thành theo kế hoạch ( 0 < x < 600 )
số sản phẩm tổ II hoàn thành theo kế hoạch là 600 - x
Số sản phẩm vượt mức của tổ I là : \(\frac{18x}{100}\)
Số sản phẩm vượt mức của tổ II là : \(\frac{\left(600-x\right)21}{100}\)
Ta có phương trình : \(\frac{18x}{100}+\frac{\left(600-x\right)21}{100}=120\)
Giải phương trình ta được x = 200
Vậy : Số sản phẩm theo kế hoạch của tổ I là :200 sản phẩm.
:Số sản phẩm theo kế hoạch của tổ II là :400 sản phẩm.
Bài 3 :
Gọi 4 số tự nhiên đó lần lượt là a; a + 1; a + 2; a + 3
Ta có biểu thức :
\(A=a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(A=\left[a\left(a+3\right)\right]\left[\left(a+1\right)\left(a+2\right)\right]+1\)
\(A=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
Đặt \(x=a^2+3a+1\)ta có :
\(A=\left(x-1\right)\left(x+1\right)+1\)
\(A=x^2-1^2+1\)
\(A=x^2\left(đpcm\right)\)
Qúa dễ luôn
Ta có : a x 2 + b x 2 + c x 2 \(\le\) 5
2 x ( a + b + c ) \(\le\)5
a + b + c \(\le\) 5/2
a + b + c \(\le\) 2,5
Mà theo đề bài : a + b + c không lớn hơn 2 ( có nghĩa là bé hơn 2 ) . Nên a + b + c phải luôn luôn bé hơn 2,5 ( vì 2 luôn bé hơn 2,5 )
Vậy : a x 2 + b x 2 + c x 2 \(\le\) 5
\(\left|x+y\right|\text{nhỏ nhất }\Rightarrow x+y=0\Rightarrow x=-y\)
thay xy=1 và x+y=0, ta có:
\(M=2x^2+2\left(-x^2\right)+3.1-\left(x+y\right)-3=4x^2=\left(2x\right)^2\)
áp dụng bđt cô si
a4 + a4 +a4 +1 >= 4a3 <=> 3a4 + 1 >= 4a3
cmtt với b và c ta có :
3b4 +1 >= 4b3
3c4 + 1 >= 4c3
=> 3a4 +3b4 +3c4 >= 3a3 +3b3 +3c3 +(a3 +b3 +c3 - 3) = 3a3 + 3b3 +3c3
đpcm
dấu bằng xảy ra khi a = b = c = 1
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{\left(ab+bc+ac\right).\left(a+b+c\right)-abc}{abc.\left(a+b+c\right)}=0\Leftrightarrow\left(ab+bc+ac\right).\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(a+b\right).\left(a+c\right).\left(c+b\right)=0\Leftrightarrow\orbr{\begin{cases}a=-b\\a=-c\end{cases}\text{hoac }c=-b}\)
thay vào rồi tính (nhớ đưa dấu âm lên tử nha) còn phần phan tích sẽ giải thích sau-bây h bận >:
\(\left(a+b+c\right).\left(ab+ac+bc\right)-abc=0\)
\(\Leftrightarrow a^2c+a^2b+abc+b^2a+b^2c+abc+c^2a+c^2b=0\)
\(\Leftrightarrow\left(abc+a^2c\right)+\left(abc+b^2c\right)+\left(a^2b+ab^2\right)+\left(c^2a+c^2b\right)=0\)
\(\Leftrightarrow ac.\left(a+b\right)+cb.\left(a+b\right)+ab.\left(a+b\right)+c^2.\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right).\left(ac+cb+ab+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right).\left[c\left(a+c\right)+b.\left(a+c\right)\right]=\left(a+b\right).\left(a+c\right).\left(c+b\right)=0\)
~~ cách này dài dòng >: but t ko nghĩ đc cách nào ngắn hưn =(