Cho đa thức \(P\left(x\right)=x^4+ax^3+bx^2+cx+d\)(a,b,c,d là các hằng số ) . Biết P(1) = 10 , P(2)=20, P(3) = 30 . Tính giá trị biểu thức \(\frac{P\left(12\right)+P\left(-8\right)}{10}+25\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giusp mk vứiiiii
Nhân dịp sinh nhật, mẹ mua tặng Mai một chiếc bánh kem. Mai cho em Hoa 1/3 chiếc bánh, cho chị Linh 1/4 chiếc bánh. Hỏi Mai còn lại bao nhiêu phần chiếc của chiếc bánh kem đó
a, Xét tứ giác BHFM có
^BHF + ^BMF = 1800
mà 2 góc này đối
Vậy tứ giác BHFM là tứ giác nt 1 đường tròn
hay điểm B;H;F;M cùng thuộc 1 đường tròn
b, Vì tứ giác BHFM nt 1 đường tròn
=> ^HFM = ^ABE ( góc ngoài đỉnh B )
mà ^ABE = ^AFE ( góc nt chắn cung AE )
Vậy ^AFH = ^MFH
hay FE là tia phân giác ^AFM
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
\(x^2+y^2=z^2\)
Công thức tổng quát có dạng:
\(x=k\left(m^2-n^2\right),y=k2mn,z=k\left(m^2+n^2\right)\)(\(m,n\inℤ\))
\(xyz=k^32mn\left(m^4-n^4\right)\)
- Chứng minh \(xyz\)chia hết cho \(3\):
Nếu \(m,n\)có ít nhất một số chia hết cho \(3\)suy ra \(xyz\)chia hết cho \(3\).
Nếu \(m,n\)đều không chia hết cho \(3\)suy ra \(m^4,n^4\)đều chia cho \(3\)dư \(1\)
suy ra \(m^4-n^4\)chia hết cho \(3\).
Suy ra \(xyz\)chia hết cho \(3\).
- Chứng minh \(xyz\)chia hết cho \(4\):
Nếu \(m,n\)có ít nhất một số chẵn suy ra \(2mn\)chia hết cho \(4\)
suy ra \(xyz\)chia hết cho \(4\).
Nếu \(m,n\)đều lẻ thì \(m^4,n^4\)đều lẻ nên \(m^4-n^4\)chẵn.
Suy ra \(xyz\)chia hết cho \(4\).
- Chứng minh \(xyz\)chia hết cho \(5\):
Nếu \(m,n\)có ít nhất một số chia hết cho \(5\)suy ra \(xyz\)chia hết cho \(5\).
Nếu \(m,n\)đều không chia hết cho \(5\)suy ra \(m^4,n^4\)đều chia cho \(5\)dư \(1\)
suy ra \(m^4-n^4\)chia hết cho \(5\).
Suy ra \(xyz\)chia hết cho \(5\).
Vậy \(xyz\)chia hết cho cả \(3,4,5\)mà \(3,4,5\)đôi một nguyên tố cùng nhau suy ra \(xyz\)chia hết cho \(3.4.5=60\).
Ta có đpcm.
Suy ra \(xyz\)chia hết cho \(3\).
\(\left(-5\right)^2-4.\left(-3\right)\left(-2\right)=25-24=1>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)
\(M=x_1+\dfrac{1}{x_1}+\dfrac{1}{x_2}+x_2\\ =\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\\ =\dfrac{-5}{3}+\dfrac{-5}{3}:\dfrac{2}{3}\\ =\dfrac{-5}{3}-\dfrac{5}{2}\\ =\dfrac{-25}{6}\)
-3x2-5x-2=0
Ta có :-3-(-5)-2=0
=>Phương trình có 2 nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-5}{3}\end{cases}}\)
Thay x1;x2 vào M ta được:
M=(-1)+\(\frac{1}{-1}\)+\(\frac{1}{\frac{-5}{3}}\)+\(\frac{-5}{3}\)
=(-1)+(-1)+\(-\frac{3}{5}+-\frac{5}{3}\)
=\(-\frac{64}{15}\)
Đặt x+y=a; x-y=b
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\2a+b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\4a+2b=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\7a=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-2b=9\\a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-3\\a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-3\\x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\-1+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+5y=9\\3x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5y=9\\15x+5y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}14x=-14\\y=\dfrac{9-x}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Đặt \(f\left(x\right)=10x\)
Khi đó ta có \(f\left(1\right)=10=P\left(1\right)\), \(f\left(2\right)=20=P\left(2\right)\), \(f\left(3\right)=30=P\left(3\right)\)
Do đó \(P\left(x\right)-f\left(x\right)=g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
\(\Rightarrow P\left(x\right)=10+g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
Vì \(P\left(x\right)\)là đa thức bậc 4 mà \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\)là đa thức bậc 3 nên \(g\left(x\right)\)là đa thức bậc 1 hay \(g\left(x\right)=x+n\)
Vậy \(P\left(x\right)=\left(x+n\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)+10\)
\(\Rightarrow P\left(12\right)=\left(12+n\right)\left(12-1\right)\left(12-2\right)\left(12-3\right)=\left(n+12\right).11.10.9=990\left(n+12\right)\)
\(=990n+11880\)
Và \(P\left(-8\right)=\left(-8+n\right)\left(-8-1\right)\left(-8-2\right)\left(-8-3\right)=\left(n-8\right)\left(-9\right)\left(-10\right)\left(-11\right)\)\(=-990\left(n-8\right)=-990n+7920\)
Vậy \(\frac{P\left(12\right)+P\left(-8\right)}{10}+25=\frac{990n+11880-990n+7920}{10}+25=\frac{19800}{10}+25=2005\)