Em cảm ơn ạ
\(\sqrt[3] {x+6} + \sqrt {x-1} = x^2 -1\)
\(\sqrt {x-2} + 2\sqrt {3x} = x-\sqrt{4-x} + 5\)
\(\sqrt {x^2 + 15} = 3x-2+ \sqrt{x^2+8}\)
\(\sqrt {x-2} + \sqrt {4-x} + \sqrt {2x-5} = 2x^2-5x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:\(x\ge-3\)
\(x^2+\sqrt{x+3}=3\\ \Leftrightarrow\sqrt{x+3}=3-x^2\left(-\sqrt{3}\le x\le3\right)\\ \Leftrightarrow x+3=x^4-6x^2+9\\ \Leftrightarrow x^4-6x^2-x+6=0\\ \Leftrightarrow\left(x^4-x^3\right)+\left(x^3-x^2\right)-\left(5x^2-5x\right)-\left(6x-6\right)=0\\ \Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)-5x\left(x-1\right)-6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^3+x^2-5x-6\right)=0\\ \Leftrightarrow\left(x-1\right)\left[\left(x^3+2x^2\right)-\left(x^2+2x\right)-\left(3x+6\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-\left(x+2\right)-\left(x+2\right)\right]=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\)
a, \(\Delta'=1-\left(2m-5\right)=6-2m\)
để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)
b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm)
a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)
b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)
Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)
Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)
Vậy để [...] thì \(m=\frac{39}{14}\)
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)
Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=\left(-m\right)^2-4.1\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\)\(\Leftrightarrow m-2\ne0\)\(\Leftrightarrow m\ne2\)
Khi đó \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)(hệ thức Vi-ét)
Độ dài cạnh huyền của tam giác vuông có 2 cgv là \(x_1,x_2\)là \(\sqrt{x_1^2+x_2^2}=\sqrt{\left(x_1+x_2\right)^2-2x_1x_2}=\sqrt{m^2-2\left(m-1\right)}=\sqrt{m^2-2m+2}\)
Ta có \(x_1x_2=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)hệ thức lượng trong tam giác vuông.
\(\Leftrightarrow m-1=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)\(\Leftrightarrow\frac{m-1}{\sqrt{m^2-2m+2}}=\frac{1}{\sqrt{5}}\)\(\Leftrightarrow\sqrt{\frac{m^2-2m+1}{m^2-2m+2}}=\sqrt{\frac{1}{5}}\)\(\Leftrightarrow\frac{m^2-2m+1}{m^2-2m+2}=\frac{1}{5}\)\(\Leftrightarrow5m^2-10m+5=m^2-2m+2\)\(\Leftrightarrow4m^2-8m+3=0\)
\(\Delta_1=\left(-8\right)^2-4.4.3=16>0\)
\(\Rightarrow\orbr{\begin{cases}m_1=\frac{-\left(-8\right)+\sqrt{16}}{2.4}=\frac{3}{2}\\m_2=\frac{-\left(-8\right)-\sqrt{16}}{2.4}=\frac{1}{2}\end{cases}}\)
Vậy để [...] thì \(\orbr{\begin{cases}m=\frac{3}{2}\\m=\frac{1}{2}\end{cases}}\)
Gọi bán kính hình tròn lớn r ; bán kính hình tròn nhỏ : r1
Diện tích vành khuyên : S = \(r^2.\pi-r_1^2.\pi=\pi\left(r^2-r_1^2\right)\)
Lại có diện tích hình tròn (A;AB) S1 = AB2.\(\pi\) = (BO2 - AO2).\(\pi=\left(r^2-r_1^2\right).\pi\)
=> S = S1 (đpcm)
Đường trỏn nhỏ bán kính OA, đường tròn lớn bán kính OB
Mặt khác do BC là tiếp tuyến đường tròn nhỏ
\(\Rightarrow OA\perp BC\)
\(\Rightarrow A\) là trung điểm BC
\(\Rightarrow AB^2=OB^2-OA^2\)
Diện tích hình vành khuyên:
\(S_1=S_{\left(O;OB\right)}-S_{\left(O;OA\right)}=\pi OB^2-\pi.OA^2=\pi\left(OB^2-OA^2\right)\)
\(S_{\left(A;AB\right)}=\pi.AB^2=\pi\left(OB^2-OA^2\right)\)
\(\Rightarrow S_1=S_{\left(A;AB\right)}\) (đpcm)
a, Ta có ^ACB = 900 ( góc nt chắn nửa đường tròn )
Xét tứ giác AMDC có
^AMD + ^ACB = 1800 mà 2 góc này đối
Vậy tứ giác AMDC nt 1 đường tròn
b, Ta có ^MCA = ^MDA ( góc nt chắn cung MA của tứ giác ACDM ) (1)
Lại có ^ACE = ^ABE ( góc nt chắn cung AE ) (2)
mà ^AEB = 900 ( góc nt chắc nửa đường tròn )
Xét tứ giác MDBE có
^DMB = ^DEB = 900
mà 2 góc này kề, cùng nhìn cạnh BD
Vậy tứ giác MDBE là tứ giác nt 1 đường tròn
=> ^MDE = ^MBE ( góc nt chắc cung ME ) (3)
Từ (1) ; (2) ; (3) suy ra ^MCA = ^ICA
=> CA là phân giác ^MCI
c, Xét tam giác DAM và tam giác EAI ta có
^DAM = ^EAI ( đối đỉnh )
^ADM = ^AEI ( so le trong vì BE // DM )
Vậy tam giác DAM ~ tam giác EAI (g.g)
\(\frac{AM}{AI}=\frac{AD}{AE}\Rightarrow AM.AE=AD.AI\)
\(A=\left(\dfrac{1}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{y}-\sqrt{x}}\right):\dfrac{2\sqrt{xy}}{x-y}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}}{x-y}:\dfrac{2\sqrt{xy}}{x-y}=\dfrac{-2\sqrt{y}}{2\sqrt{xy}}=\dfrac{-1}{\sqrt{x}}=\dfrac{-\sqrt{x}}{x}\)
b, Ta có \(A=\dfrac{-1}{\sqrt{x}}=1\Leftrightarrow\sqrt{x}=-1\left(voli\right)\)
Vậy pt vô nghiệm