K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chữ số 6 có giá trị là 60

=>6 là chữ số hàng chục

5 không nằm ở hàng đơn vị

mà 5 không là chữ số hàng chục

nên 5 là chữ số hàng trăm

=>Chữ số hàng đơn vị là 7

Vậy: Số cần tìm là 567

9 tháng 7 2024

a) Để x là số hữu tỉ dương thì:

\(\dfrac{13-n}{-5}>0\)
Mà: `-5<0` 

`=>13-n<0`

`=>n>13` 

b) Để x là số hữu tỉ âm thì:

`(13-n)/-5<0`

Mà:  `-5<0`

`=>13-n>0`

`=> n<13` 

c) Đê  x không phải số hữu tỉ âm cũng không phải số hữu tỉ dương thì:

\(x=0=>\dfrac{13-n}{-5}=0\\ =>13-n=0\\ =>n=13\)

Bài 2:

Để \(\dfrac{m+2}{5};\dfrac{m-5}{-6}\) đều là các số dương thì

\(\left\{{}\begin{matrix}\dfrac{m+2}{5}>0\\\dfrac{m-5}{-6}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+2>0\\m-5< 0\end{matrix}\right.\)

=>-2<m<5

mà m nguyên

nên \(m\in\left\{-1;0;1;2;3;4\right\}\)
 Bài 3:

Để \(\dfrac{1-m}{-13};\dfrac{5-m}{3}\) đều là các số âm thì

\(\left\{{}\begin{matrix}\dfrac{1-m}{-13}< 0\\\dfrac{5-m}{3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m-1}{13}< 0\\\dfrac{m-5}{3}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m-1< 0\\m-5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>5\end{matrix}\right.\)

=>\(m\in\varnothing\)

a: \(-\dfrac{25}{20}< 0;0< \dfrac{20}{25}\)

Do đó: \(-\dfrac{20}{25}< \dfrac{20}{25}\)

b: \(\dfrac{15}{21}=\dfrac{15:3}{21:3}=\dfrac{5}{7};\dfrac{21}{49}=\dfrac{21:7}{49:7}=\dfrac{3}{7}\)

mà 5>3

nên \(\dfrac{15}{21}>\dfrac{21}{49}\)

c: \(\dfrac{-19}{49}=\dfrac{-19\cdot47}{49\cdot47}=\dfrac{-893}{49\cdot47}\)

\(\dfrac{-23}{47}=\dfrac{-23\cdot49}{47\cdot49}=\dfrac{-1127}{47\cdot49}\)

mà -893>-1127

nên \(-\dfrac{19}{49}>-\dfrac{23}{47}\)

9 tháng 7 2024

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}\\ =\dfrac{n-1}{n}\)

\(B=\dfrac{49}{2\cdot9}+\dfrac{49}{9\cdot16}+\dfrac{49}{16\cdot23}+...+\dfrac{49}{65\cdot72}\\ =7\cdot\left(\dfrac{7}{2\cdot9}+\dfrac{7}{9\cdot16}+\dfrac{7}{16\cdot23}+...+\dfrac{7}{65\cdot72}\right)\\ =7\cdot\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{23}+...+\dfrac{1}{65}-\dfrac{1}{72}\right)\\ =7\cdot\left(\dfrac{1}{2}-\dfrac{1}{72}\right)\\ =7\cdot\dfrac{35}{72}\\ =\dfrac{245}{72}\)

\(E=\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+...+\dfrac{4}{95\cdot99}\)

\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{99}\)

\(=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{33}{99}-\dfrac{1}{99}=\dfrac{32}{99}\)

\(D=\dfrac{1}{7}+\dfrac{1}{91}+\dfrac{1}{247}+\dfrac{1}{475}+\dfrac{1}{775}+\dfrac{1}{1147}\)

\(=\dfrac{1}{1\cdot7}+\dfrac{1}{7\cdot13}+\dfrac{1}{13\cdot19}+\dfrac{1}{19\cdot25}+\dfrac{1}{25\cdot31}+\dfrac{1}{31\cdot37}\)

\(=\dfrac{1}{6}\left(\dfrac{6}{1\cdot7}+\dfrac{6}{7\cdot13}+...+\dfrac{6}{31\cdot37}\right)\)

\(=\dfrac{1}{6}\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+...+\dfrac{1}{31}-\dfrac{1}{37}\right)\)

\(=\dfrac{1}{6}\left(1-\dfrac{1}{37}\right)=\dfrac{1}{6}\cdot\dfrac{36}{37}=\dfrac{6}{37}\)

\(C=\dfrac{3}{1\cdot3}+\dfrac{3}{3\cdot5}+...+\dfrac{3}{49\cdot51}\)

\(=\dfrac{3}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{49\cdot51}\right)\)

\(=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

\(=\dfrac{3}{2}\left(1-\dfrac{1}{51}\right)=\dfrac{3}{2}\cdot\dfrac{50}{51}=\dfrac{1}{17}\cdot25=\dfrac{25}{17}\)

 

a: ĐKXĐ: \(n\ne4\)

Để A là số nguyên thì \(3n+9⋮n-4\)

=>\(3n-12+21⋮n-4\)

=>\(21⋮n-4\)

=>\(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

b: ĐKXĐ: \(n\ne\dfrac{1}{2}\)

Để B là số nguyên thì \(6n+5⋮2n-1\)

=>\(6n-3+8⋮2n-1\)

=>\(8⋮2n-1\)

=>\(2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

mà 2n-1 lẻ(do n là số nguyên)

nên \(2n-1\in\left\{1;-1\right\}\)

=>\(n\in\left\{1;0\right\}\)

Bài 3:

Gọi số cần tìm là x

Theo đề, ta có: -2x+3=-7-x

=>-2x+3=-x-7

=>-2x+x=-7-3

=>-x=-10

=>x=10

vậy: Số cần tìm là 10

Bài 1:

a: -100<x<0

mà x là số có chữ số tận cùng là 0

nên \(x\in\left\{-10;-20;-30;...;-90\right\}\)

Số số hạng là \(\dfrac{\left(-90+10\right)}{-10}+1=\dfrac{-80}{-10}+1=9\left(số\right)\)

Tổng của dãy số là \(\left(-90-10\right)\cdot\dfrac{9}{2}=-100\cdot\dfrac{9}{2}=-450\)

b: -12<=x<=20

mà x chia hết cho 5

nên \(x\in\left\{-10;-5;0;5;10;15;20\right\}\)

Tổng của dãy số là:

(-10)+(-5)+0+5+10+15+20

=(-10+10)+(-5+5)+0+15+20

=0+0+0+35

=35

c: -22<=x<14

mà x chia hết cho 9

nên \(x\in\left\{-18;-9;0;9\right\}\)

Tổng của dãy số là:

(-18)+(-9)+0+9

=(-18+0)+(-9+9)

=-18+0=-18

 

 

8 tháng 7 2024

Chu vi tam giác đó là:

\(47+30+26=103\left(cm\right)\)

Diện tích tam giác đó là:

\(26\times13:2=169\left(cm^2\right)\)

a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có

\(\widehat{EAC}\) chung

Do đó: ΔAEC~ΔAHB

b; Xét ΔHCB vuông tại H và ΔKAC vuông tại K có

\(\widehat{HCB}=\widehat{KAC}\)(AD//BC)

Do đó: ΔHCB~ΔKAC

=>\(\dfrac{HC}{AK}=\dfrac{BC}{CA}\)

=>\(BC\cdot AK=CH\cdot CA\)

c: Xét ΔBHA vuông tại H có \(sinBAH=\dfrac{BH}{BA}\)

=>\(\dfrac{2}{BA}=sin30=\dfrac{1}{2}\)

=>BA=4(cm)

ΔAHB~ΔAEC

=>\(\dfrac{S_{AHB}}{S_{AEC}}=\left(\dfrac{AB}{AC}\right)^2=\left(\dfrac{4}{3}\right)^2=\dfrac{16}{9}\)

8 tháng 7 2024

a) 

\(A=\dfrac{1,11+0,19-13.2}{2,06+0,54}-\left(\dfrac{1}{2}+\dfrac{1}{4}\right):2\\ =\dfrac{1,3-26}{2,6}-\dfrac{3}{4}.\dfrac{1}{2}\\ =\dfrac{1,3\left(1-20\right)}{1,3.2}-\dfrac{3}{8}\\ =\dfrac{-19}{2}-\dfrac{3}{8}=-\dfrac{79}{8}\)

\(B=\left(5\dfrac{7}{8}-2\dfrac{1}{4}-0,5\right):2\dfrac{23}{26}\\ =\left(5+\dfrac{7}{8}-2-\dfrac{1}{4}-0,5\right):\dfrac{75}{26}\\ =\left[\left(3-0,5\right)+\left(\dfrac{7}{8}-\dfrac{2}{8}\right)\right]:\dfrac{75}{26}\\ =\left(2,5+\dfrac{5}{8}\right):\dfrac{75}{26}\\ =\dfrac{25}{8}.\dfrac{26}{75}=\dfrac{13}{12}\)

b) Để \(A< x< B\) thì: \(-\dfrac{79}{8}< x< \dfrac{13}{12}\)

\(\Rightarrow x\in\left\{-9;-8;-7;...;1\right\}\) (do \(x\in\mathbb{Z}\))