giúp mình với huhu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(x_2\ge0;\)
Phương trình hoành độ giao điểm
x2 = mx + m + 1
\(\Leftrightarrow x^2-mx-m-1=0\)
Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)
\(\Rightarrow\)Phương trình có nghiệm với mọi m
Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)
Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)
khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1
\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình
Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)
\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm)
Gọi vận tốc thực của ca nô là \(x\left(km/h\right)\)dòng nước là \(y\left(km/h\right)\)với \(x>y>0\)
Vận tốc xuôi dòng là \(x+y\left(km/h\right)\), vận tốc ngược dòng là \(x-y\left(km/h\right)\)
Lần đi thứ nhất, thời gian ca nô đi xuôi dòng là: \(\frac{70}{x+y}\left(h\right)\), thời gian ca nô đi ngược dòng là \(\frac{50}{x-y}\left(h\right)\)
Lần đi thứ hai, thời gian ca nô đi xuôi dòng là: \(\frac{35}{x+y}\left(h\right)\), thời gian ca nô đi ngược dòng là \(\frac{75}{x-y}\left(h\right)\)
Vì lần thứ nhất, ca nô dành ra 4h để đi xuôi và ngược dòng nên ta có pt \(\frac{70}{x+y}+\frac{50}{x-y}=4\)(1)
Lần thứ hai, ca nô cũng dành ra 4h để đi xuôi và ngược dòng nên ta có pt \(\frac{35}{x+y}+\frac{75}{x-y}=4\)(2)
Từ (1) và (2) ta có hpt \(\hept{\begin{cases}\frac{70}{x+y}+\frac{50}{x-y}=4\\\frac{35}{x+y}+\frac{75}{x-y}=4\end{cases}}\)(*)
Đặt \(\hept{\begin{cases}\frac{35}{x+y}=a\left(a>0\right)\\\frac{25}{x-y}=b\left(b>0\right)\end{cases}}\), khi đó (*) trở thành \(\hept{\begin{cases}2a+2b=4\\a+3b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2\\a+3b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)(nhận)
\(\Rightarrow\hept{\begin{cases}\frac{35}{x+y}=1\\\frac{25}{x-y}=1\end{cases}}\Rightarrow\hept{\begin{cases}x+y=35\\x-y=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=30\\y=5\end{cases}}\)(nhận)
Vậy vận tốc dòng nước là \(5km/h\)
cho biểu thức A 2√x xx√x−1 −1√x−1 √x 2x √x 1 a rút gọn biểu thứcb tính giá trị của √Akhi x 4 2√3.
Gọi vận tốc ô tô thứ nhất thứ 2 lần lượt là a ; b ( a > b > 0 )
Theo bài ra ta có hệ \(\hept{\begin{cases}a-b=10\\\frac{100}{b}-\frac{100}{a}=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b+10\\-\frac{100}{b+10}+\frac{100}{b}=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=50\\b=40\end{cases}}\left(tm\right)\)
Vậy vận tốc xe thứ nhất là 50 km/h
vận tốc xe thứ 2 là 40 km/h
\(T=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right).\left(y-1\right)}=\frac{x^2.\left(x-1\right)+y^2.\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
\(T\ge2\sqrt{\frac{x^2}{y-1}.\frac{y^2}{x-1}}=\sqrt{\frac{x^2}{x-1}.\frac{y^2}{y-1}}\)(cô si 2 số nhé)
ta xét :\(\frac{x^2}{x-1}=\left(x+1\right)+\frac{1}{x-1}=\left(x-1\right)+\frac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\frac{1}{x-1}}+2=4\)
tương tự thì \(\frac{y^2}{y-1}\ge4\)
\(\Rightarrow T\ge2\sqrt{4.4}=8\)
vậy \(MinT=8\)
\(\frac{a^2+b^2}{ab}+\frac{\sqrt{2ab}}{a+b}=\frac{\left(a+b\right)^2}{ab}+\frac{\sqrt{2ab}}{a+b}-2\)
đặt \(t=\frac{a+b}{\sqrt{ab}}\left(t\ge2\right)\)(do \(a+b\ge2\sqrt{ab}\)
\(A=t^2+\frac{2}{t}-2=\left(\frac{1}{t}+\frac{1}{t}+\frac{t^2}{8}\right)+\frac{7}{8}t^2-2\ge3\sqrt[3]{\frac{1.1.t^2}{t.t.8}}+\frac{7}{8}.2^2-2=3\)
vậy ..................
đkxđ: \(\hept{\begin{cases}2x+1\ne0\\y+2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-\frac{1}{2}\\y\ne-2\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{x-1}{2x+1}=a\\\frac{y-2}{y+2}=b\end{cases}}\), hpt đã cho trở thành \(\hept{\begin{cases}a-b=1\\3a-2b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}b=a-1\\3a-2\left(a-1\right)=3\end{cases}}\Leftrightarrow\hept{\begin{cases}b=a-1\\a+2=3\end{cases}}\Leftrightarrow\hept{\begin{cases}b=0\\a=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x-1}{2x+1}=1\\\frac{y-2}{y+2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=2x+1\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)(nhận)
Vậy hpt đã cho có nghiệm duy nhất là \(\left(-2;2\right)\)