1) cho hàm số y=2x+b. Tìm b để hàm số cắt trục hoành tại điểm có hoành độ bằng 3.
2) Cho Parabol (P): y=x2 và đường thẳng d: y=(m-1)x+m-4. Tìm m để d cắt (P) tại 2 điểm phân biệt nằm về 2 phía của trục tung.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoành độ giao điểm (P) ; (d) tm pt
\(\frac{1}{2}x^2+mx+m-1=0\Leftrightarrow x^2+2mx+2m-2=0\)
\(\Delta'=m^2-\left(2m-2\right)=m^2+2m+2=\left(m+1\right)^2+1>0\)
Vậy (P) cắt (d) tại 2 điểm pb
Hoành độ giao điểm (P) ; (d) tm pt
\(\frac{1}{2}x^2-2x-m=0\Leftrightarrow x^2-4x-2m=0\)
\(\Delta'=4-\left(-2m\right)=4+2m\)
Để (P) cắt (d) tại 2 điểm pb khi m > -2
b, Ta có \(P=\frac{x\sqrt{x}-\sqrt{x}}{x}=\frac{x-1}{\sqrt{x}}>0\)
\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x-1>0\\x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x>1\\x\ne0\end{cases}}\)
ĐKXĐ: \(x>0;x\ne1\)
Rút gọn P ta được \(P=\dfrac{x-1}{\sqrt{x}}\)
Để \(P>0\Leftrightarrow\dfrac{x-1}{\sqrt{x}}>0\)
\(\Rightarrow x-1>0\Rightarrow x>1\)
O A B C N M A B C S T
Bổ đề: Các giao điểm của đường trung trực cạnh \(BC\) với hai đường phân giác đi qua đỉnh \(A\) của \(\Delta ABC\) nằm trên đường tròn ngoại tiếp của \(\Delta ABC\).
Chứng minh: Vẽ đường tròn ngoại tiếp \(\Delta ABC\), gọi \(S,T\) lần lượt là trung điểm các cung \((BC,(BAC\)
Ta có \(SB=SC\) và \(\widehat{SAB}=\widehat{SAC}\). Suy ra \(S\) là giao điểm của đường phân giác trong \(\widehat{BAC}\) và trung trực cạnh \(BC\)
Tương tự, \(T\) là giao điểm của đường phân giác ngoài \(\widehat{BAC}\) và trung trực cạnh \(BC\).
Giải bài toán: Ta thấy \(OA\) là phân giác của \(\widehat{CON}\), trung trực đoạn \(CN\) cắt \(OA\) tại \(M\)
Suy ra \(\left(C,O,N,M\right)_{cyc}\). Từ đó \(\Delta CMN~\Delta CAB\) vì chúng là các tam giác cân có góc ở đáy bằng nhau.
Kéo theo \(\Delta CMA~\Delta CNB\). Suy ra \(\frac{AM}{BN}=\frac{CA}{CB}\) hay \(\frac{AM}{\frac{3}{4}OB}=\frac{OA}{2OC}\Rightarrow8AM=3OA.\)
Ta có a2 + 1 \(\ge\)2a
Khi đó \(\frac{1}{a^2+ab-a+5}=\frac{1}{a^2+1+ab-a+4}\le\frac{1}{2a+ab-a+4}=\frac{1}{ab+a+4}\)
Tương tự ta được \(\frac{1}{b^2+bc-b+5}\le\frac{1}{bc+b+4};\frac{1}{c^2+ac-c+5}\le\frac{1}{ac+c+4}\)
Cộng vế với vế => A \(\le\frac{1}{ab+a+4}+\frac{1}{bc+b+4}+\frac{1}{ca+c+4}\)
=> 4A \(\le\frac{4}{ab+a+1+3}+\frac{4}{bc+b+1+3}+\frac{4}{ca+c+1+3}\)
\(\le\frac{1}{ab+a+1}+\frac{1}{3}+\frac{1}{bc+b+1}+\frac{1}{3}+\frac{1}{ac+a+1}+\frac{1}{3}\)
\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+a+1}+1\)
\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab}+1\)
\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+1=\frac{ab+a+1}{ab+a+1}+1=1+1=2\)
=> \(A\le\frac{1}{2}\)(Dấu "=" xảy ra <=> a = b = c = 1)
cho mik hỏi tí là làm sao ra được \(\frac{4}{ab+a+1+3}\le\frac{1}{ab+a+1}+\frac{1}{3}\) vậy ạ?
\(A=\dfrac{7x^2}{16}+\left(\dfrac{9x^2}{16}+3xy+4y^2\right)\)
\(A=\dfrac{7x^2}{16}+\left(\dfrac{3x}{4}+2y\right)^2\ge\dfrac{7x^2}{16}\ge\dfrac{7.1^2}{16}=\dfrac{7}{16}\)
\(A_{min}=\dfrac{7}{16}\) khi \(\left(x;y\right)=\left(1;-\dfrac{3}{8}\right)\)
\(A=x^2+3xy+4y^2\ge4y^2+3y+1\)
\(=\left(4y^2+\frac{2.2y.3}{4}+\frac{9}{16}\right)+\frac{7}{16}\)
\(=\left(2y+\frac{3}{4}\right)^2+\frac{7}{16}\ge\frac{7}{16}\)
1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0)
<=> \(0=6+b\Leftrightarrow b=-6\)
2, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-1\right)x-m+4=0\)
Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay
\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)