giả phương trình sau: 3x4-11x2+10=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
y = m\(x\) + 2
⇒ y - m\(x\) - 2 = 0
⇒ -m\(x\) + y - 2 = 0
⇒d(O;d) = \(\dfrac{\left|0-0-2\right|}{\sqrt{m^2+1}}\) = 1
⇒ \(\sqrt{1+m^2}\) = 2
⇒ 1 + m2 = 4 ⇒ m2 = 3 ⇒ m = -\(\sqrt{3}\); m = \(\sqrt{3}\)
b, d(O;d) = \(\dfrac{2}{\sqrt{m^2+1}}\)
2 > 0; 1 + m2 > 0 Vậy \(\dfrac{2}{\sqrt{m^2+1}}\) lớn nhất ⇔ 1 + m2 nhỏ nhất.
m2 ≥ 0 ⇒ 1 + m2 ≥ 1 vậy m2 + 1 đạt giá trị nhỏ nhất là 1 khi m = 0
⇒d(max) = 2 ⇒ m= 0
Vậy m = 0 thì khoảng cách từ gốc tọa độ đến đường thẳng d là lớn nhất và khoảng cách đó là 2
Kết luận a, Với m = -\(\sqrt{3}\); \(\sqrt{3}\) thì khoảng cách từ gốc tọa độ tới d bằng 1
b, Với m = 0 thì khoảng cách từ gốc tọa độ tới d bằng 2 là khoảng cách lớn nhất .
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Hoành độ giao điểm của d và P là:
x2 = 2mx -m +1 <=> x2 -2mx +m-1
đenta = 4m2-4.(m-1) = 4m2-4m+4 = (2m)2-2.2m +1 +3=(2m-1)2+3
=> đenta >= 3
Vậy không có giá trị m để P tiếp xúc với d
b,Áp dụng định lí Vi-ét:
\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=m-1\end{matrix}\right.\)
Ta có: x12.x2 + mx2=x2
<=> x12.x2+mx2-x2=0 <=> x12.x2 + x2(m-1)=0
<=> x12.x2+x2(x1.x2)=0 <=>x12.x2+x22.x1=0
<=>x1.x2.(x1+x2)=0 <=> (m-1).2m=0
<=> \(\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)
Vậy m \(\in\) \(\left\{1;0\right\}\)
`3x^{4}-11x^{2}+10=0`
`<=>3x^{4}-6x^{2}-5x^{2}+10=0`
`<=>(x^{2}-2)(3x^{2}-5)=0`
`<=>x^{2}=2` hoặc `x^{2}=5/3`
\(<=>x=\pm \sqrt{2}\) hoặc \(x=\pm \dfrac{\sqrt{15}}{3}\)