giúp mik với nhé ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{4x^2+xy+4y^2}=\sqrt{\dfrac{7}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)}\ge\sqrt{\dfrac{7}{4}\left(x+y\right)^2+\dfrac{1}{2}\left(x+y\right)^2}=\dfrac{3}{2}\left(x+y\right)\)
Tương tự:
\(\sqrt{4y^2+yz+4z^2}\ge\dfrac{3}{2}\left(y+z\right)\); \(\sqrt{4z^2+zx+4x^2}\ge\dfrac{3}{2}\left(z+x\right)\)
Cộng vế:
\(B\ge\dfrac{3}{2}\left(x+y+y+z+z+x\right)=3\left(x+y+z\right)\)
\(B\ge3.\dfrac{1}{3}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2=1\)
\(B_{min}=1\) khi \(x=y=z=\dfrac{1}{9}\)
\(\left(1-\frac{x}{x-\sqrt{x}+1}\right):\frac{x+2\sqrt{x}+1}{x\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+1-x}{x-\sqrt{x}+1}.\frac{\left(\sqrt{x}\right)^3+1}{\left(\sqrt{x}+1\right)^2}\)
\(=\frac{1-\sqrt{x}}{x-\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}\)
\(=\frac{1-\sqrt{x}}{\sqrt{x}+1}\)
\(a,P=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-2\)
\(P=\frac{3x+3\sqrt{x}-3+\sqrt{x}+2+\sqrt{x}-1-2x-2\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{x+3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(b,P=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
\(\sqrt{x}-1\ge-1\)
\(\Leftrightarrow\frac{2}{\sqrt{x}-1}\le-2\)
\(\Leftrightarrow P\le1-2=-1\)
\(c,P=4\)\(\Leftrightarrow\sqrt{x}+1=4\sqrt{x}-4\Leftrightarrow3\sqrt{x}=5\Leftrightarrow x=\frac{25}{9}\)
d, Do câu b, \(P\le-1\)\(\Rightarrow P< -3\)
Tối qua bạn có hỏi câu a và mk đã giải đc là:\(P=\frac{3}{\sqrt{x}-1}\)
b)\(P=1\Rightarrow\frac{3}{\sqrt{x}-1}=1\)
\(\Leftrightarrow\sqrt{x}-1=3\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=4^2\)
\(\Leftrightarrow x=16\)(TM)
Vậy khi x=16 thì P=1
\(P=\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}=\dfrac{x\sqrt{2}}{\sqrt{2x}\left(\sqrt{2}+\sqrt{x}\right)}+\dfrac{\sqrt{2}\left(\sqrt{x}-\sqrt{2}\right)}{\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{2}}+\dfrac{\sqrt{2}}{\sqrt{x}+\sqrt{2}}=\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}+\sqrt{2}}=1\)