Tính tổng A=\(\dfrac{5}{3.7}+\dfrac{5}{7.11}+\dfrac{5}{11.15}+...+\dfrac{5}{2019.2023}\)
các bạn làm đầy đủ các bước đừng làm tắt giúp mình nhé.Mình cảm ơn ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, - 1,2 + (- 0,8) + 0,25 + 5,75 - 2021
= - (1,2 + 0,8) + (0,25 + 5,75) - 2021
= - 2 + 6 - 2021
= 4 - 2021
= - 2017
b, - 0,1 + \(\dfrac{16}{9}\) + 11,1 - \(\dfrac{20}{9}\)
= (11,1 - 0,1) - (\(\dfrac{20}{9}\) - \(\dfrac{16}{9}\))
= 11 - \(\dfrac{4}{9}\)
= \(\dfrac{95}{5}\)
a) Do AD là tia phân giác của ∠BAC (gt)
⇒ ∠BAD = ∠BAC : 2
= 60⁰ : 2
= 30⁰
∆ABD có:
∠BAD + ∠ABD + ∠ADB = 180⁰ (tổng ba góc trong ∆ABD)
⇒ ∠ADB = 180⁰ - ∠BAD - ∠ABD
= 180⁰ - 30⁰ - 50⁰
= 100⁰
b) Do 30⁰ < 50⁰ < 100⁰
⇒ ∠BAD < ∠ABD < ∠ADB
⇒ BD < AD < AB (quan hệ giữa cạnh và góc đối diện trong tam giác)
Số tiền bán 50 chiếc tivi đầu tiên:
(10000000 + 10000000 . 30%) . 50 = 65000000 (đồng)
Giá mỗi chiếc tivi bán lần đầu:
10000000 + 10000000 . 30% = 13000000 (đồng)
Giá mỗi chiếc tivi bán lần sau:
13000000 . 65% = 8450000 (đồng)
Số tivi bán lần sau:
80 - 50 = 30 (chiếc)
Số tiền bán tivi lần sau:
8450000 . 30 = 253500000 (đồng)
Tổng số tiền tiền bán hai lần:
253500000 + 650000000 = 903500000 (đồng)
Số tiền vốn bỏ ra:
10000000 . 80 = 800000000 (đồng)
Do 800000000 < 903500000 nên cửa hàng lãi với số tiền lài:
903500000 - 800000000 = 103500000 (đồng)
Số tiền bán 50 chiếc tivi đầu tiên:
(10000000 + 10000000 . 30%) . 50 = 65000000 (đồng)
Giá mỗi chiếc tivi bán lần đầu:
10000000 + 10000000 . 30% = 13000000 (đồng)
Giá mỗi chiếc tivi bán lần sau:
13000000 . 65% = 8450000 (đồng)
Số tivi bán lần sau:
80 - 50 = 30 (chiếc)
Số tiền bán tivi lần sau:
8450000 . 30 = 253500000 (đồng)
Tổng số tiền tiền bán hai lần:
253500000 + 650000000 = 903500000 (đồng)
Số tiền vốn bỏ ra:
10000000 . 80 = 800000000 (đồng)
Do 800000000 < 903500000 nên cửa hàng lãi với số tiền lài:
903500000 - 800000000 = 103500000 (đồng)
Năm 2023 là năm không nhuận, tháng 2 có 28 ngày
Để viết các ngày từ 1 đến 9 cần 9 chữ số
Để viết các ngày từ 10 đến 28 cần: (28-10+1) x 2= 38(chữ số)
Để ghi các ngày dương lịch của tháng 2 năm 2023 cần số lượt chữ số là:
9+38=47(lượt)
1.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{7}=\frac{z}{10}=\frac{2x}{10}=\frac{y}{7}=\frac{z}{10}$
$=\frac{2x+y-z}{10+7-10}=\frac{-21}{7}=-3$
$\Rightarrow x=-3.5=-15; y=-3.7=-21; z=-3.10=-30$
2.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{2x}{6}=\frac{4y}{16}=\frac{3z}{18}$
$=\frac{4y-2x+3z}{16-6+18}=\frac{-56}{28}=-2$
$\Rightarrow x=-2.3=-6; y=-2.4=-8; z=-2.6=-12$
Tìm x, y, z biết:\(\sqrt{\left(x-2024\right)^2}\) + ∣ x+ y -4z ∣ + \(\sqrt{5y^2}\) = 0 với x,y,z ϵ R
Lời giải:
Ta thấy: $\sqrt{(x-2024)^2}\geq 0$ với mọi $x\in\mathbb{R}$
$|x+y-4z|\geq 0$ với mọi $x,y,z\in\mathbb{R}$
$\sqrt{5y^2}\geq 0$ với mọi $y\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó phải nhận giá trị $0$
Hay:
$\sqrt{(x-2024)^2}=|x+y-4z|=\sqrt{5y^2}=0$
$\Leftrightarrow x=2024; y=0; z=\frac{x+y}{4}=506$
Vì các p/s bé hơn 1 nên tổng nó bé hơn 1
thế thui
CM: A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\)+...+ \(\dfrac{1}{50^2}\) < 1
\(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
.............................
\(\dfrac{1}{50^2}\) < \(\dfrac{1}{49.50}\) = \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
Cộng vế với vế ta có:
A < \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
A < 1 - \(\dfrac{1}{50}\)
A < 1 (đpcm)
A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069
Lời giải:
$A=5(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{2019.2023})$
$4A=5(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{2019.2023})$
$=5(\frac{7-3}{3.7}+\frac{11-7}{7.11}+\frac{15-11}{11.15}+...+\frac{2023-2019}{2019.2023})$
$=5(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{2019}-\frac{1}{2023})$
$=5(\frac{1}{3}-\frac{1}{2023})=\frac{2020}{6069}$
$\Rightarrow A=\frac{2020}{6069}:4=\frac{505}{6069}$