K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2024

\(\sqrt{\dfrac{9}{4}}-\sqrt{2}+\sqrt{2}\\ =\dfrac{3}{2}-\left(\sqrt{2}-\sqrt{2}\right)\\ =\dfrac{3}{2}-0\\ =\dfrac{3}{2}\)

1 tháng 7 2024

\(H=\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\\ =\dfrac{4\left(1+\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\\ =\dfrac{4\left(1+\sqrt{3}\right)}{1-3}-\sqrt{3}\\ =\dfrac{4\left(1+\sqrt{3}\right)}{-2}-\sqrt{3}\\ =-2\left(1+\sqrt{3}\right)-\sqrt{3}\\ =-2-2\sqrt{3}-\sqrt{3}\\ =-2-3\sqrt{3}\)

1 tháng 7 2024

Cảm ơn bạn nhé

1 tháng 7 2024

Tam giác ABC vuông tại A ta có:

\(tanB=\dfrac{AC}{AB}=>\dfrac{5}{12}=\dfrac{AC}{6}=>AC=\dfrac{5\cdot6}{12}=\dfrac{5}{2}\left(cm\right)\)

Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\\ =>BC=\sqrt{AB^2+AC^2}\\ =>BC=\sqrt{6^2+\left(\dfrac{5}{2}\right)^2}=\dfrac{13}{2}\left(cm\right)\)

1 tháng 7 2024

Để giải bài toán, ta cần sử dụng một số công thức và định lý trong hình học, đặc biệt là định lý Pythagore và định nghĩa của các hàm số lượng giác.

Cho tam giác ABC vuông tại A, với AB = 6 cm và tanα = 5/12. Góc B = α.

a) Tính độ dài cạnh AC

Vì tam giác vuông tại A, góc α là góc B, ta có:

tan⁡(α)=đoˆˊi diệnkeˆˋ\tan(\alpha) = \frac{\text{đối diện}}{\text{kề}}tan(α)=keˆˋđoˆˊi diện

Trong tam giác ABC vuông tại A:

tan⁡(α)=BCAC\tan(\alpha) = \frac{BC}{AC}tan(α)=ACBC

Theo đề bài, tan⁡(α)=512\tan(\alpha) = \frac{5}{12}tan(α)=125.

Do đó, ta có:

BCAC=512\frac{BC}{AC} = \frac{5}{12}ACBC=125

Từ đó suy ra:

BC=512ACBC = \frac{5}{12} ACBC=125AC

b) Tính độ dài cạnh BC

Ta sử dụng định lý Pythagore cho tam giác ABC vuông tại A:

BC2=AB2+AC2BC^2 = AB^2 + AC^2BC2=AB2+AC2

Đầu tiên, ta cần tính AC.

Biết rằng tan⁡(α)=512\tan(\alpha) = \frac{5}{12}tan(α)=125, do đó ta có:

sin⁡(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}sin(α)=BC2+AC2BC sin⁡(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}sin(α)=BC2+AC2BC

Vì tan(α) = 5/12 nên ta đặt BC = 5k và AC = 12k. Vì thế:

BC=5kBC = 5kBC=5k

AC=12kAC = 12kAC=12k

Sử dụng định lý Pythagore:

BC2=AB2+AC2BC^2 = AB^2 + AC^2BC2=AB2+AC2

(5k)2=AB2+(12k)2(5k)^2 = AB^2 + (12k)^2(5k)2=AB2+(12k)2

25k2=62+144k225k^2 = 6^2 + 144k^225k2=62+144k2

25k2=36+144k225k^2 = 36 + 144k^225k2=36+144k2

Từ đó, ta có:

AC=12k5AC = \frac{12k}{5}AC=512k

AC2=AB2+BC2AC^2 = AB^2 + BC^2AC2=AB2+BC2

(12k)2=62+(5k)2(12k)^2 = 6^2 + (5k)^2(12k)2=62+(5k)2

144k2=36+25k2144k^2 = 36 + 25k^2144k2=36+25k2

144k2−25k2=36144k^2 - 25k^2 = 36144k225k2=36

119k2=36119k^2 = 36119k2=36

k2=36119k^2 = \frac{36}{119}k2=11936

k=36119k = \sqrt{\frac{36}{119}}k=11936

k=6119k = \frac{6}{\sqrt{119}}k=1196

BC=5k=5×6119=30119BC = 5k = 5 \times \frac{6}{\sqrt{119}} = \frac{30}{\sqrt{119}}BC=5k=5×1196=11930

AC=12k=12×6119=72119AC = 12k = 12 \times \frac{6}{\sqrt{119}} = \frac{72}{\sqrt{119}}AC=12k=12×1196=11972

Chúng ta có thể tính toán lại bằng cách:

Suy ra: BC=512ACBC = \frac{5}{12} ACBC=125AC AC=12×65=14.4AC = \frac{12 \times 6}{5} = 14.4AC=512×6=14.4 BC=5×1.2=6BC = 5 \times 1.2 = 6BC=5×1.2=6

Suy ra:...

1 tháng 7 2024

Bạn viết rõ đc k 

Sau 1 năm số tiền nhận được là:

\(100\cdot\left(1+7,2\%\right)=107,2\)(triệu đồng)

Sau 2 năm số tiền nhận được là:

\(107,2\cdot\left(1+7,2\%\right)=114,9184\)(triệu đồng)

a: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\) và \(MA\cdot MB=HM^2\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right);NA\cdot NC=NH^2\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\left(3\right);AB^2=BH\cdot BC;AC^2=CH\cdot BC\)

Từ (1) và (3) suy ra \(AM\cdot AB=HB\cdot HC\)

b: Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

c: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

=>\(HA^2=HM^2+HN^2\)

=>\(HB\cdot HC=MA\cdot MB+NA\cdot NC\)

d: \(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)

=>\(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)

e: Xét ΔAHB vuông tại H có HM là đường cao

nên \(BM\cdot BA=BH^2\)

=>\(BM=\dfrac{BH^2}{BA}\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(CN\cdot CA=CH^2\)

=>\(CN=\dfrac{CH^2}{CA}\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(BC=\dfrac{AB\cdot AC}{AH}\)

\(BM\cdot CN\cdot BC=\dfrac{BH^2}{BA}\cdot\dfrac{CH^2}{CA}\cdot\dfrac{AB\cdot AC}{AH}\)

\(=\dfrac{BH^2}{AH}\cdot CH^2=\dfrac{\left(BH\cdot CH\right)^2}{AH}=\dfrac{AH^4}{AH}=AH^3\)

mà AH=MN(AMHN là hình chữ nhật)

nên \(BM\cdot CN\cdot BC=MN^3\)

 

a: \(\Delta=\left[2\left(m+1\right)\right]^2-4\cdot2\cdot m\)

\(=\left(2m+2\right)^2-8m=4m^2+8m+4-8m=4m^2+4>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

b: Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2\left(m+1\right)}{2}=-\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=\dfrac{m}{2}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1< 1\\x_2< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2< 2\\x_1\cdot x_2< 1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\left(m+1\right)< 2\\\dfrac{m}{2}< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1>-2\\m< 2\end{matrix}\right.\)

=>-3<m<2

1 tháng 7 2024

a) 

\(\Delta=\left[2\left(m+1\right)\right]^2-4\cdot2\cdot m=4\left(m^2+2m+1\right)-8m\\ =4m^2+8m+4-8m=4m^2+4\ge4>0\forall x\)

=> Pt luôn có nghiệm với mọi m 

b) Ta có: \(\left\{{}\begin{matrix}x_1< 1\\x_2< 1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_1+x_2< 2\\x_1x_2< 1\end{matrix}\right.\) 

Theo vi-ét: \(\left\{{}\begin{matrix}x_1x_2=\dfrac{m}{2}\\x_1+x_2=\dfrac{-2\left(m+1\right)}{2}=-\left(m+1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{m}{2}< 1\\-\left(m+1\right)< 2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m>-3\end{matrix}\right.\Rightarrow-3< m< 2\)