Viết bài văn nghị luận về hoạt động thiện nguyện trong đời sống hiện nay
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em ko biết em chỉ biết xếp theo thứ tự tăng dần thôi
5 8 12 65 71 72 83
1.Nêu thời điểm diễn ra hoạt động
2.Nêu sự chuẩn bị
3.Diễn biến của hoạt động
4.Ý nghĩa của hoạt động
A B C D I M H N E
a/
Xét tg vuông ABD có
\(\sin\widehat{B}=\dfrac{AD}{AB}=\dfrac{12}{13}\)
\(\sin\widehat{BAD}=\sin\left(\dfrac{\Pi}{2}-\widehat{B}\right)=\cos\widehat{B}\)
Ta có
\(\sin^2\widehat{B}+\cos^2\widehat{B}=1\Rightarrow\cos^2\widehat{B}=1-\sin^2\widehat{B}=1-\left(\dfrac{12}{13}\right)^2=\dfrac{25}{169}\)
\(\Rightarrow\sin\widehat{BAD}=\cos\widehat{B}=\sqrt{\dfrac{25}{169}}\)
\(\Rightarrow\sin\widehat{BAD}=\dfrac{BD}{AB}=\dfrac{BD}{13}=\sqrt{\dfrac{25}{169}}\)
\(\Rightarrow BD=13.\sqrt{\dfrac{25}{169}}=5cm\)
Xét tg cân ABC có
\(BD=CD=\dfrac{1}{2}BC\) (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)
\(\Rightarrow BC=2.BD=2.5=10cm\)
b/
Xét tg BDM có
\(BI=MI\left(gt\right);DI\perp BM\) => tg BDM cân tại D (trong tg đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
\(\Rightarrow DM=BD=\dfrac{1}{2}BC\)
c/
Ta có
\(DM=BD\left(cmt\right);BD=CD\left(cmt\right)\Rightarrow DM=BD=CD\)
=> tg BDM và tg CDM đều là tg cân tại D
Xét tg BCM có
\(\widehat{BMC}=\left(\widehat{BMD}+\widehat{CMD}\right)=180^o-\left(\widehat{ABC}+\widehat{BCM}\right)\)
Mà \(\widehat{BMD}=\widehat{ABC};\widehat{CMD}=\widehat{BCM}\) (góc ở đáy tg cân)
\(\Rightarrow\widehat{BMC}=180^o-\left(\widehat{BMD}+\widehat{CMD}\right)=180^o-\widehat{BMC}\)
\(\Rightarrow2\widehat{BMC}=180^o\Rightarrow\widehat{BMC}=\dfrac{180^o}{2}=90^o\Rightarrow CM\perp AB\)
Mà \(AD\perp BC\)
=> H là trực tâm của tg ABC \(\Rightarrow BN\perp AC\) (trong tg 3 đường cao đồng quy)
Xét tg vuông BCM và tg vuông BCN có
BC chung
\(\widehat{ABC}=\widehat{ACB}\) (góc ở đáy tg cân)
=> tg BCM = tg BCN (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
\(\Rightarrow BM=CN\) mà AB=AC (gt)
\(\Rightarrow\dfrac{BM}{AB}=\dfrac{CN}{AC}\) => MN//BC (Talet đảo) (1)
Xét tứ giác BDME có
BI=MI (gt); EI=DI (gt) => BDME là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> ME//BD (Trong hbh các cặp cạnh đối // với nhau từng đôi một)
=> ME//BC (2)
Từ (1) và (2) \(\Rightarrow MN\equiv ME\) (Từ 1 điểm bên ngoài 1 đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng cho trước)
=> E; M; N thẳng hàng
1: ΔABC cân tại A có AD là đường cao
nên D là trung điểm của BC
Xét ΔADB vuông tại D có \(sinABD=\dfrac{AD}{AB}=\dfrac{12}{13}\)
=>\(sinABC=\dfrac{12}{13}\)
=>\(cosABC=\sqrt{1-\left(\dfrac{12}{13}\right)^2}=\dfrac{5}{13}\)
Xét ΔABC có \(cosABC=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
=>\(\dfrac{13^2+BC^2-13^2}{2\cdot13\cdot BC}=\dfrac{5}{13}\)
=>\(BC^2=\dfrac{5}{13}\cdot26\cdot BC=10BC\)
=>\(BC^2-10BC=0\)
=>BC(BC-10)=0
=>BC-10=0
=>BC=10(cm)
2: Xét ΔDIB vuông tại I và ΔDIM vuông tại I có
DI chung
IB=IM
Do đó: ΔDIB=ΔDIM
=>DB=DM
mà DB=1/2BC
nên DM=1/2BC
3: Xét ΔMBC có
MD là đường trung tuyến
\(MD=\dfrac{1}{2}BC\)
Do đó: ΔMBC vuông tại M
=>CM\(\perp\)AB tại M
Xét ΔIME vuông tại I và ΔIBD vuông tại I có
IM=IB
IE=ID
Do đó: ΔIME=ΔIBD
=>\(\widehat{IME}=\widehat{IBD}\)
=>ME//BD
=>ME//BC
Xét ΔABC có
AD,CM là các đường trung tuyến
AD cắt CM tại H
Do đó: H là trực tâm của ΔABC
=>BH\(\perp\)AC tại N
Xét ΔABN vuông tại N và ΔACM vuông tại M có
AB=AC
\(\widehat{BAN}\) chung
Do đó: ΔABN=ΔACM
=>AN=AM
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
Ta có: MN//BC
ME//BC
MN,ME có điểm chung là M
Do đó: N,M,E thẳng hàng
a: Ta có: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{ACF}=\widehat{BCF}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABE}=\widehat{CBE}=\widehat{ACF}=\widehat{FCB}\)
Xét ΔABE và ΔACF có
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔHBC cân tại H
=>HB=HC
=>H nằm trên đường trung trực của BC(1)
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AH là đường trung trực của BC
=>AH\(\perp\)BC tại D và D là trung điểm của BC
ΔABE=ΔACF
=>AE=AF
Xét ΔABC có \(\dfrac{AF}{AB}=\dfrac{AE}{AC}\)
nên FE//BC
c: Ta có: FE//BC
AH\(\perp\)BC
Do đó: AH\(\perp\)FE
Ta có: ΔAFE cân tại A
mà AH là đường cao
nên AH là đường trung trực của EF
Đây là dạng toán nâng cao chuyên đề giải phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi. Hôm nay Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp tìm điều kiện để phân thức là một số nguyên.
Bước 1: rút ẩn y theo \(x\)
Bước 2: tìm điều kiện để phân thức có chứa \(x\) là số nguyên.
Bước 3: tìm y
Bước 4: kết luận.
2\(xy\) - \(x\) - y = 2
2\(xy\) - y = 2 + \(x\)
y(2\(x\) - 1) = 2 + \(x\)
y = \(\dfrac{2+x}{2x-1}\); (\(x;y\) \(\in\) Z)
y \(\in\) Z ⇔ 2 + \(x\) ⋮ 2\(x\) - 1 ⇒ 4 + 2\(x\) ⋮ 2\(x\) - 1
2\(x\) - 1 + 5 ⋮ 2\(x\) - 1
5 ⋮ 2\(x\) - 1
2\(x\) - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
\(x\) \(\in\) {-2; 0; 1; 3}
Lập bảng ta có:
\(x\) | - 2 | 0 | 1 | 3 |
y = \(\dfrac{2+x}{2x-1}\) | 0 | - 2 | 3 | 1 |
\(x;y\in\) Z | Loại |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (- 2; 0); (0; - 2); (1; 3); (3; 1)
Kết luận Phương trình có cặp nghiệm nguyên \(x;y\) là:
(\(x;y\)) = (-2; 0); (0; - 2); (1; 3); (3; 1)
Tham khảo ạ :
Tố Hữu đã từng viết trong bài “Một khúc ca”:
“Nếu là con chim, chiếc lá,
Thì con chim phải hót, chiếc lá phải xanh.
Lẽ nào vay mà không có trả
Sống là cho, đâu chỉ nhận riêng mình?”
Trong cuộc sống, con người cần có tấm lòng nhân ái. Và những hoạt động thiện nguyện vì cộng đồng là rất ý nghĩa, cần thiết.
Trước hết, hoạt động thiện nguyện là giúp đỡ những người có hoàn cảnh khó khăn, thiếu thốn về vật chất. Những hoạt động thiện nguyện giúp cho cuộc sống của mỗi người trở nên tốt đẹp hơn, xã hội ngày càng phát triển và văn minh hơn.
Con người Việt Nam luôn được biết đến là giàu lòng nhân ái. Chúng ta có cùng chung nguồn gốc “Con Rồng cháu Tiên”, bởi vậy mà vẫn luôn biết giúp đỡ lẫn nhau. Dù là sự chia sẻ về vật chất (cơm ăn, áo mặc, tiền bạc…) hay sẻ chia về tinh thần (những lời nói động viên, ánh mắt an ủi…) thì cũng đều đáng để người nhận trân trọng, biết ơn. Hình ảnh màu áo xanh tình nguyện chắc chắn đã quá quen thuộc với thế hệ trẻ Việt Nam. Họ đã bước chân đến những vùng miền xa xôi của tổ quốc để giúp đỡ những người khó khăn (dạy chữ cho trẻ em vùng cao, giúp đỡ người vô gia cư…). Hay những doanh nghiệp sẵn sàng thu mua nông sản để giúp đỡ cho bà con nông dân khi dịch bệnh, thiên tai hoành hành, phá hoại mùa màng và cuộc sống. Cả những phong trào quyên góp, ủng hộ đang diễn ra rộng khắp như “Tết ấm tình thương”, “Quỹ vì người nghèo”, “Ủng hộ nạn nhân chất độc màu da cam”, “Giọt màu hồng trao đi”... đều thể hiện sự đồng cảm và làm cho khoảng cách giữa người với người xích lại gần nhau hơn. Đó đều là những hành động đẹp đẽ, cần được lan tỏa nhiều hơn trong cuộc sống.
“Sống trong đời sống cần có một tấm lòng…”. Những câu hát trong bài hát “Để gió cuốn đi” của cố nhạc sĩ Trịnh Công Sơn đã để lại cho người nghe những suy nghĩ sâu sắc về cách sống biết cho đi những yêu thương để nhận lại được hạnh phúc. Thế hệ trẻ hôm nay cần phải tích cực tham gia các hoạt động thiện nguyện, sống và cống hiến để cuộc sống trở nên ý nghĩa.