cần thay thế 1R = 100 \(\Omega\) vào mạch điện có U2=20V ko đổi hỏi cần chọn công suất của R tối thiểu là bao nhiêu để mạch điện làm vc ổn định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề thì phải , coi lại giùm mình nhé :
Đặt \(\sqrt[3]{a}=x;\)\(\sqrt[3]{b}=y;\)\(\sqrt[3]{c}=z\)\(\left(a,b,c>0\right)\)
Ta cần chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge9\)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt[3]{3.\frac{1}{xyz}}\)
Và \(x+y+z\ge\sqrt[3]{3xyz}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\sqrt[3]{3.\frac{1}{abc}}.\sqrt[3]{3abc}=9\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{x+y+z}\)
Vậy \(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\ge\frac{9}{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}\)\(\left(đpcm\right)\)
x-6 \(\ge0\)và x2 -x -20 > 0
\(\Leftrightarrow x>6\)và ( x - 5 ) ( x + 4 ) > 0
X>6, , x < -4 ,và x > 5 cuối cùng chọn x > 6 thì hàm số trên đc xác định..Chúc bạn zui zẻ nha.
B = 1/21 + 1/22 + ... + 1/50 > 1/60 + 1/60 + ... + 1/60 (30 số hạng)
=> B > 30/60 = 1/2
Mà 1/2 > 39/40
=> B > A
\(B=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{50}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{3}{5}=\frac{24}{40}< \frac{39}{40}=A\)
\(\Rightarrow A>B\)
B D C E A Q H
1. Xét tứ giác CEHD ta có:
góc CEH = 900 (Vì BE là đường cao)
góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.
AD là đường cao => AD ┴ BC => BDA = 900.
Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.
3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến
=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.
Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.
4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).
Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)
Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3
Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.
Vậy DE là tiếp tuyến của đường tròn (O) tại E.
5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm
Câu 1: Diện tích tam giác là: \(\frac{h_A.a}{2}=\frac{3.6}{2}=9\)(đvdt)
Câu 2: Diện tích tam giác là: \(\frac{1}{2}ab.\sin C=\frac{1}{2}.4.5.\sin60^o=5\sqrt{3}\)(đvdt)
Câu 2: Ta có: \(\hept{\begin{cases}c^2=a^2+b^2-2ab.\cos C\\a^2+b^2>c^2\end{cases}\Rightarrow c^2>c^2-2ab.\cos C\Leftrightarrow2ab.\cos C>0}\)
\(\Rightarrow\cos C>0\Rightarrow C< 90^o\)
Vậy C là góc nhọn