Tìm cách cắm 5 bông hoa vào 7 lọ khác nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Ta có :
\(A=\frac{a^2+2a}{2a+10}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)
a) Giá trị của biểu thức A xác định
\(\Leftrightarrow\hept{\begin{cases}a+5\ne0\\a\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}}\)
Vậy để giá trị của biểu thức A xác định \(\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)
ĐKXĐ : \(\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)
b) Ta có :
\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a\left(a^2+2a\right)+2\left(a+5\right)\left(a-5\right)+50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a^3+2a^2+2\left(a^2-25\right)+50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a^3+4a^2-50+50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)
\(A=\frac{a^2+5a-a-5}{2\left(a+5\right)}\)
\(A=\frac{\left(a+5\right)\left(a-1\right)}{2\left(a+5\right)}=\frac{a-1}{2}\)
c) Thay a = -1 ( Thỏa mãn ĐKXĐ ) vào biểu thức A ta có :
\(A=\frac{-1-1}{2}=-1\)
Vậy tại a = -1 thì giá trị của biểu thức A là - 1
d) Cho A = 0 , ta có :
\(\frac{a-1}{2}=0\)
\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)( Thỏa mãn ĐKXĐ )
Vậy a = 1 thì giá trị của biểu thức A = 0 .
\(a.ĐKXĐ:\)\(2a+10\ne0\) \(a\ne-5\)
\(a\ne0\) \(\Leftrightarrow\)\(a\ne0\) \(\Leftrightarrow\)\(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)
\(2a\left(a+5\right)\ne0\) \(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)
\(b.A=\frac{a\left(a+2\right)}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)
\(=\frac{a\left(a+2\right)a}{2a\left(a+5\right)}+\frac{\left(a-5\right)2\left(a+5\right)}{2a\left(a+5\right)}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)
\(=\frac{a^3+2a^2+\left(2a-10\right)\left(a+5\right)+5\left(10-a\right)}{2a\left(a+5\right)}\)
\(=\frac{a^3+2a^2+2a^2+10a-10a-50+50-5a}{2a\left(a+5\right)}\)
\(=\frac{a^3+4a^2-5a}{2a\left(a+5\right)}\)
\(=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)
\(=\frac{a\left(a-1\right)\left(a+5\right)}{2a\left(a+5\right)}\)
\(=\frac{a-1}{2}\)với \(x\ne0\)và \(x\ne-5\)
\(c.\)Thay \(a=-1\left(t/mđk\right)\Leftrightarrow\frac{a-1}{2}\Rightarrow\frac{-1-1}{2}\)
\(=-1\left(t/mđk\right)\)
\(d.A=0\Leftrightarrow A=\frac{a-1}{2}=0\)
\(\Rightarrow a-1=2.0\)
\(\Rightarrow a-1=0\)
\(\Rightarrow a=1\left(t/mđk\right)\)
Gọi số cây của 3 lớp 7A, 7B, 7C lần lượt là: \(x,y,z\left(x,y,z\inℕ^∗\right)\)( cây )
Theo bài ra ta có:
\(x=\frac{11}{5}y\Rightarrow\frac{x}{11}=\frac{y}{5}\left(1\right)\)
\(y=\frac{35}{17}z\Rightarrow\frac{y}{35}=\frac{z}{17}\left(2\right)\)
\(x+y+z=387\)
Từ \(\left(1\right)\)và \(\left(2\right)\)ta có: \(\frac{x}{77}=\frac{y}{35}=\frac{z}{17}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{77}=\frac{y}{35}=\frac{z}{17}=\frac{x+y+z}{77+35+17}=\frac{387}{129}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{77}=3\\\frac{y}{35}=3\\\frac{z}{17}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3\times77\\y=3\times35\\z=3\times17\end{cases}\Rightarrow}\hept{\begin{cases}x=231\\y=105\\z=51\end{cases}}}\)
Vậy số cây 3 lớp 7A, 7B, 7C trồng lần lượt là: 231 cây, 105 cây, 51 cây.
cắt ra r cắm