\([\frac{1}{(2x-y)^2}+\frac{2}{4xy^2-y^2}+\frac{1}{(2x+y)^2}].\frac{4x^2+4xy+y^2}{16x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-> a : 9 = 3
= 3 × 9
= 27
-> a : 27 = 12
= 12 × 27
= 324
-> a : 41 = 27
= 27 × 41
= 1107
Mình cũng không biết mình đúng hem nha!!!
Mình biết gì thì chỉ đó à! Sẽ có bạn khác chỉ cho bạn đáp án đúng nhất!!
CHÚC BẠN HỌC TỐT!!!
a chia 9 dư 3 , hay (a+6) ⋮ 9 hay (a+6+90) ⋮ 9 (Tính chất chia hết của 1 tổng) hay (a+96) ⋮ 9.
a chia 27 dư 12 , hay (a+15) ⋮ 27 hay (a+15+81) ⋮ 27 (Tính chất chia hết của 1 tổng) hay (a+96) ⋮ 27.
a chia 41 dư 27 , hay (a+14) ⋮ 41 hay (a+14+82) ⋮ 41 (Tính chất chia hết của 1 tổng) hay (a+96) ⋮ 41.
Suy ra : (a+96) ⋮ 9;27 và 41 hay (a+96) ϵ BC(9,27,41).
9 = 32 ; 27 =33 ; 41 = 41.
BCNN(9,27,41) = 33.41=1107.
BC(9,27,41) = { 0;1107;2214;... }
Vì a nhỏ nhất nên a+96 cũng nhỏ nhất nên a + 96 = 1107. (a+96=0 thì a=0-96 -> vô lý -> loại)
a + 96 = 1107
a = 1107 - 96
a = 1101.
Vạy a= 1101.
Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)
<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)
<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)
(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0
( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y
nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y
Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
<=> \(x=y=\frac{1}{3}\)
Làm tiếp:
Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P
ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)
\(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2}{1-x^2}\)
\(=\frac{1}{x+1}+\frac{1}{x-1}-\frac{2}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x-1+x+1-2}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x-2}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2}{x+1}\)
Vì: \(\left(a-2\right)^{2018}\ge0\) và \(\left|b^2-16\right|\ge0\)
Mà: \(\left(a-2\right)^{2018}+\left|b^2-16\right|=0\) ( đề bài )
\(\Rightarrow\hept{\begin{cases}\left(a-2\right)^{2018}=0\\\left|b^2-16\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a-2=0\\b^2-16=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\b^2=16\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=4\end{cases}}\)
Vậy: .......................
1. Câu hỏi của Quỳnh Như - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu 1 tại link này.
Nếu đại lượng y phụ thuộc đại lượng thay đôi x sao cho với môi giá trị cua x ta luôn xác định được chi chi một giá trị tương ứng cua y được gọi là hàm số cua x và x giọi là biến số
y=fx ;y=gx ....hàm số cho bơi công thức y=2x3 ta có thê viết y=fx=2x3 khi x bàng 3 thì giá tri tương ứng cua y là 9
\(2^x+12^2=y^2-3^2\)
<=> \(2^x+153=y^2\)
Với x < 0 => \(2^x\notin Z\)=> \(2^x+153\notin Z\)=> \(y^2\notin Z\)=> \(y\notin Z\)
Với x = 0 => 154 = y^2 ( loại )
Với x > 0
TH1: x = 2k + 1 ( k là số tự nhiên )
Ta có: \(2^{2k+1}+153=y^2\)
VT\(=4^k.2+153\): 3 dư 2
=> \(VP=y^2:3\) dư 2 vô lí vì số chính phương chia 3 dư 0 hoặc 1
TH2: x = 2k ( k là số tự nhien )
Ta có: \(2^{2k}+153=y^2\)
<=> \(\left(y-2^k\right)\left(y+2^k\right)=153\)
=> \(153⋮y+2^k\Rightarrow y+2^k\in\left\{\pm1;\pm153;\pm3;\pm51;\pm9;\pm17\right\}\)
Em tự làm tiếp nhé.