K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2024

\(\left(2x+1\right)\left(4x^2-2x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=8x^3+1-\left(8x^3-1\right)=8x^3+1-8x^3+1=2\)

29 tháng 7 2024

\(C=\left(3x+2\right)^2-\left(3x+2\right)\left(3x-2\right)-6x\)

\(=9x^2+12x+4-\left(9x^2-4\right)-6x=6x+8\)

Vậy bth phụ thuộc biến x, ko có đpcm 

29 tháng 7 2024

\(A=3x\left(x-y\right)-y\left(y-3x\right)\\ =3x^2-3xy-y^2+3xy\\ =3x^2-y^2\\ B=\left(x-y\right)\left(x^2+y^2\right)-\left(x^4y-xy^4\right):xy\\ =\left(x-y\right)\left(x^2+y^2\right)-\left(x^3-y^3\right)\\ =x^3+xy^2-x^2y-y^3-x^3+y^3\\ =xy^2-x^2y\)

29 tháng 7 2024

A B C E H

Cách 1: Trong tg vuông cạnh đối diện góc \(30^o\) thì bằng nửa cạnh huyền

\(\Rightarrow AB=\dfrac{BC}{2}\Rightarrow BC=2AB\)

Cách 2:

Xét tg vuông ABC có

\(\widehat{B}=90^o-\widehat{C}=60^o\)

Xét tg vuông CEH và tg vuông BEH có

\(\widehat{C}=30^o\)

\(\widehat{EBH}=\dfrac{\widehat{B}}{2}=\dfrac{60^o}{2}=30^o\)

\(\Rightarrow\widehat{C}=\widehat{EBH}\)

EH chung

=> tg CEH = tg BEH (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)

\(\Rightarrow CH=BH\)

Xét tg vuông BEH và tg vuông BAE có

\(\widehat{EBH}=\widehat{EBA}\) (gt)

BE chung

=> tg BEH = tg EBA (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

\(\Rightarrow AB=BH\)

Mà \(BH=CH=\dfrac{BC}{2}\)

\(\Rightarrow AB=\dfrac{BC}{2}\Rightarrow BC=2AB\)

Xét tứ giác HMIK có \(\widehat{H}+\widehat{M}+\widehat{I}+\widehat{K}=360^0\)

=>\(3x+4x+2x+x=360\)

=>\(10x=360^0\)

=>\(x=36^0\)

=>\(\widehat{H}=3\cdot36^0=108^0;\widehat{M}=4\cdot36^0=144^0;\widehat{I}=2\cdot36^0=72^0;\widehat{K}=36^0\)

Vì \(\widehat{H}+\widehat{I}=180^0\)

nên HM//IK

=>HMIK là hình thang

29 tháng 7 2024

khai triển đa thức ta đc:

=x2-4x+4+x2+4x+4+x3+9x2+27x+27+27x3+27x2+9x+1

=28x3+36x2+36x+36

Vậy hệ số của x2 sau khi khai triển là 36

Bài 1;

a: ABCD là hình thang cân

=>\(\widehat{D}=\widehat{C}=60^0\)

ABCD là hình thang

=>\(\widehat{BAD}+\widehat{ADC}=180^0\)

=>\(\widehat{BAD}=120^0\)

ABCD là hình thang cân

=>\(\widehat{BAD}=\widehat{ABC}\)

=>\(\widehat{ABC}=120^0\)

b: Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

\(\widehat{ADE}=\widehat{BCF}\)

Do đó: ΔAED=ΔBFC

=>AE=BF

Bài 4:

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

b: ΔAHB=ΔAKC

=>BH=CK

Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KC=HB

Do đó: ΔKBC=ΔHCB

c: ΔAHB=ΔAKC

=>AH=AK

Xét ΔABC có \(\dfrac{AH}{AC}=\dfrac{AK}{AB}\)

nên KH//BC

Xét tứ giác BKHC có KH//BC và BH=KC

nên BKHC là hình thang cân

a: Ta có: \(\widehat{ICA}+\widehat{ICB}=\widehat{ACB}=90^0\)

\(\widehat{ICB}+\widehat{NCB}=\widehat{NCI}=90^0\)

Do đó: \(\widehat{ICA}=\widehat{NCB}\)

Ta có: \(\widehat{CAI}+\widehat{CBI}=90^0\)(ΔCBA vuông tại C)

\(\widehat{CBI}+\widehat{CBN}=\widehat{NBI}=90^0\)

Do đó: \(\widehat{CAI}=\widehat{CBN}\)

Xét ΔCAI và ΔCBN có

\(\widehat{CAI}=\widehat{CBN}\)

\(\widehat{ICA}=\widehat{NCB}\)

Do đó: ΔCAI~ΔCBN

b: Ta có: \(\widehat{ACM}+\widehat{ACI}=\widehat{ICM}=90^0\)

\(\widehat{ICA}+\widehat{ICB}=\widehat{ACB}=90^0\)

Do đó: \(\widehat{ACM}=\widehat{ICB}\)

Ta có: \(\widehat{CAM}+\widehat{CAB}=\widehat{BAM}=90^0\)

\(\widehat{CAB}+\widehat{CBA}=90^0\)(ΔCAB vuông tại C)

Do đó: \(\widehat{CAM}=\widehat{CBA}\)

Xét ΔCAM và ΔCBI có

\(\widehat{CAM}=\widehat{CBI}\)

\(\widehat{ACM}=\widehat{BCI}\)

Do đó: ΔCAM~ΔCBI

=>\(\dfrac{AC}{CB}=\dfrac{AM}{BI}\)

=>\(AC\cdot BI=MA\cdot BC\)

c: Xét tứ giác CIBN có \(\widehat{ICN}+\widehat{IBN}=90^0+90^0=180^0\)

nên CIBN là tứ giác nội tiếp

=>\(\widehat{CIN}=\widehat{CBN}\)

=>\(\widehat{CIN}=\widehat{BAC}\)

a: \(\left(x+2\right)^2-\left(x-2\right)\left(x+1\right)=3\)

=>\(x^2+4x+4-\left(x^2-x-2\right)=3\)

=>\(x^2+4x+4-x^2+x+2-3=0\)

=>5x+3=0

=>5x=-3

=>\(x=-\dfrac{3}{5}\)

b: \(\left(2x+3\right)^2-4\left(x-1\right)^2=0\)

=>\(\left(2x+3\right)^2-\left(2x-2\right)^2=0\)

=>\(\left(2x+3+2x-2\right)\left(2x+3-2x+2\right)=0\)

=>\(5\left(4x+1\right)=0\)

=>4x+1=0

=>4x=-1

=>\(x=-\dfrac{1}{4}\)

c: \(\left(x+1\right)\left(x^2-x+1\right)-x\left(x^2+2\right)-2=0\)

=>\(x^3+1-x^3-2x-2=0\)

=>-2x-1=0

=>-2x=1

=>\(x=\dfrac{1}{-2}=-\dfrac{1}{2}\)