tính chỉ số WHtR của ông An và ông Chung
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: |2,5|+|7,5|=2,5+7,5=10
b: \(1,2\cdot\left|-3\right|+6,4=1,2\cdot3+6,4=3,6+6,4=10\)
c: \(\left|-\dfrac{7}{2}\right|+\left|\dfrac{15}{2}\right|=\dfrac{7}{2}+\dfrac{15}{2}=\dfrac{22}{2}=11\)
Do 8 chia hết cho 4 \(\Rightarrow8^{2008}⋮4\)
\(\Rightarrow8^{2008}=4k\)
\(\Rightarrow5^{8^{2008}}=5^{4k}=\left(5^4\right)^k=625^k\)
Mà \(625\equiv1\left(mod24\right)\Rightarrow625^k\equiv1\left(mod24\right)\)
\(\Rightarrow5^{8^{2008}}\equiv1\left(mod24\right)\)
\(\Rightarrow5^{8^{2008}}+23\equiv0\left(mod24\right)\)
Hay \(5^{8^{2008}}+23\) chia hết 24
a.
Do \(My||BC\Rightarrow\widehat{CMy}=\widehat{MCB}\) (so le trong)
Mà \(\widehat{MCB}=45^0\Rightarrow\widehat{CMy}=45^0\)
lại có My là phân giác của \(\widehat{CMx}\Rightarrow\widehat{CMx}=2\widehat{CMy}\)
\(\Rightarrow\widehat{CMx}=2.45^0=90^0\)
b.
Do \(BC||My\Rightarrow\widehat{CBM}=\widehat{xMy}\)
Mà \(\widehat{xMy}=\widehat{CMy}=45^0\) (My là phân giác)
\(\Rightarrow\widehat{CBM}=45^0\)
Lại có Bx là phân giác \(\widehat{ABC}\Rightarrow\widehat{ABC}=2\widehat{CBM}\)
\(\Rightarrow\widehat{ABC}=2.45^0=90^0\)
\(\Rightarrow\Delta ABC\) vuông tại B
Áp dụng công thức: \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow1-\dfrac{1}{1+2+...+n}=1-\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=1-\dfrac{2}{n\left(n+1\right)}\)
\(=\dfrac{n\left(n+1\right)-2}{n\left(n+1\right)}=\dfrac{n^2+n-2}{n\left(n+1\right)}=\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Do đó:
\(A=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
\(=\dfrac{1.2.3...\left(n-1\right)}{2.3.4...n}.\dfrac{4.5.6...\left(n+2\right)}{3.4.5...\left(n+1\right)}=\dfrac{1}{n}.\dfrac{n+2}{3}=\dfrac{n+2}{3n}\)
\(\Rightarrow A=\dfrac{B}{3}\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{1}{3}\)
a: m\(\perp\)a
n\(\perp\)a
Do đó: m//n
b: m//n
=>\(\widehat{A_1}=\widehat{ABC}\)(hai góc so le trong)
=>\(\widehat{A_1}=72^0\)
c: Xét ΔABC có \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^0\)
=>\(\widehat{C_1}=180^0-64^0-72^0=44^0\)
\(A=\dfrac{1}{299}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
\(299A=1+\dfrac{1}{2}+...+\dfrac{1}{101}-\left(\dfrac{1}{300}+\dfrac{1}{301}+...+\dfrac{1}{400}\right)\)
Thêm bớt \(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{299}\) ta được:
\(299A=1+\dfrac{1}{2}+...+\dfrac{1}{101}+\left(\dfrac{1}{102}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{300}+...+\dfrac{1}{400}\right)\)
\(299A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{400}\right)\)
\(101B=1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+\dfrac{1}{3}-\dfrac{1}{104}+....+\dfrac{1}{299}-\dfrac{1}{400}\)
\(101B=\left(1+\dfrac{1}{2}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{400}\right)\)
\(\Rightarrow299A=101B\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{101}{299}\)
a: \(\widehat{MON}+\widehat{O_1}+45^0=180^0\)
=>\(\widehat{O_1}=180^0-90^0-45^0=45^0\)
Ta có: \(\widehat{O_1}=\widehat{MNO}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên OB//AM
b: Ta có: OB//AM
MA\(\perp\)AB
Do đó: OB\(\perp\)BA
\(n^2+n-7=\left(n^2-2n\right)+\left(3n-6\right)-1\\ =n\left(n-2\right)+3\left(n-2\right)-1\\ =\left(n-2\right)\left(n+3\right)-1\)
Để: \(\left(n^2+n-7\right)⋮\left(n-2\right)\Rightarrow\left[\left(n-2\right)\left(n+3\right)-1\right]⋮\left(n-2\right)\\ \Rightarrow1⋮\left(n-2\right)\) (Vì: \(\left(n-2\right)\left(n+3\right)⋮\left(n-2\right)\forall n\inℤ\) )
\(\Rightarrow n-2\in\left\{1;-1\right\}\Rightarrow n\in\left\{3;1\right\}\)
Ta có:
\(n^2+n-7\\ =\left(n^2-2n\right)+\left(3n-6\right)-1\\ =n\left(n-2\right)+3\left(n-2\right)-1\\ =\left(n-2\right)\left(n+3\right)-1\)
Để `n^2+n-7` chia hết cho n - 2 thì:
1 ⋮ n - 2
=> n - 2 ∈ Ư(1) = {1; -1}
=> n ∈ {3; 1}
tk nhé
Ông An cao 180 cm, vòng bụng 108 cm.
Ông Chung cao 160 cm, vòng bụng 70 cm.