giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge-1\)
\(5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x^2+2\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+b^2=x^2+2\)
Pt trở thành:
\(5ab=2\left(a^2+b^2\right)\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=b\\a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x^2-x+1}=\sqrt{x+1}\\\sqrt{x^2-x+1}=2\sqrt{x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2-x+1\right)=x+1\\x^2-x+1=4\left(x+1\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(Q=ac+bc-2022ab\le ac+bc=c\left(a+b\right)\le\dfrac{1}{4}\left(c+a+b\right)^2=\dfrac{1}{4}\)
\(Q_{max}=\dfrac{1}{4}\) khi \(\left\{{}\begin{matrix}a+b+c=1\\ab=0\\c=a+b\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(0;\dfrac{1}{2};\dfrac{1}{2}\right);\left(\dfrac{1}{2};0;\dfrac{1}{2}\right)\)
\(Q=c\left(a+b\right)-2022ab\ge c\left(a+b\right)-\dfrac{1011}{2}\left(a+b\right)^2\)
\(Q\ge c\left(1-c\right)-\dfrac{1011}{2}\left(1-c\right)^2\)
\(Q\ge c\left(1-c\right)-\dfrac{1011}{2}c\left(c-2\right)-\dfrac{1011}{2}\)
\(Q\ge\dfrac{c\left(1011+1013\left(1-c\right)\right)}{2}-\dfrac{1011}{2}\ge-\dfrac{1011}{2}\)
\(Q_{min}=-\dfrac{1011}{2}\) khi \(\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\)
a) Ta có \(\widehat{AKB}=90^0\) (góc nội tiếp chắn nửa đường tròn)
\(\widehat{BEC}=90^0\) (Do \(CD\) là trung trực của \(OA\))
\(\Rightarrow\widehat{BKC}+\widehat{BEC}=90^0+90^0=180^0\)
\(\Rightarrow BEHK\) là tứ giác nội tiếp.
b) Ta có \(OC=OD=R\) nên tam giác \(OCD\) cân tại O
Mà \(OE\perp CD\Rightarrow OE\) là phân giác \(\widehat{COD}\Rightarrow\widehat{COA}=\widehat{DOA}\)
\(\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{AD}\)
Do \(\left\{{}\begin{matrix}\widehat{ACH}=\dfrac{1}{2}sđ\stackrel\frown{AD}\\\widehat{AKC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\end{matrix}\right.\Rightarrow\widehat{ACH}=\widehat{AKC}\)
Xét \(\Delta ACH\) và \(\Delta AKC\) có
\(\widehat{CAK}\) chung
\(\widehat{ACH}=\widehat{AKC}\) (cmt)
\(\Rightarrow\Delta ACH\sim\Delta AKC\) (g.g) \(\Rightarrow\dfrac{AC}{AH}=\dfrac{AK}{AC}\Rightarrow AC^2=AH.AK\)
Ta có: Tam giác \(AOC\) cân tại \(O\) (do \(OC=OA=R\))
Mặt khác: \(\Delta OEC\) vuông tại \(E\), có \(OE=\dfrac{1}{2}OA=\dfrac{1}{2}OC\)
\(\Rightarrow\widehat{OCE}=30^0\Rightarrow\widehat{AOC}=60^0\)
\(\Rightarrow\Delta OAC\) đều hay \(AC=OA=OC=R\)
Mình có nghĩ ra cách này mọi người xem giúp mình với
f(x) = \(ax^2+bx+c\)
Ta có f(0) = 2 => c = 2
Ta đặt Q(x) = \(ax^2+bx+c-2020\)
và G(x) = \(ax^2+bx+c+2021\)
f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư
\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)
Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0
hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)
G(x) chia cho x + 1 số dư
\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)
Mà G(x) chia hết cho x + 1 nên \(R_2\)=0
hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)