K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`#3107.101107`

\(\left(x+\dfrac{1}{3}\right)^2=\left(\pm\dfrac{2}{3}\right)^6\\ \left(x+\dfrac{1}{3}\right)^2=\left[\pm\left(\dfrac{2}{3}\right)^3\right]^2\\ \left(x+\dfrac{1}{3}\right)^2=\left(\pm\dfrac{8}{27}\right)^2\)

TH1: \(x+\dfrac{1}{3}=\dfrac{8}{27}\\ x=\dfrac{8}{27}-\dfrac{1}{3}\\ x=-\dfrac{1}{27}\)

TH2: 

\(x+\dfrac{1}{3}=-\dfrac{8}{27}\\ x=-\dfrac{8}{27}-\dfrac{1}{3}\\ x=-\dfrac{17}{27}\)

Vậy, `x \in {-1/27; -17/27}.`

4
456
CTVHS
26 tháng 9 2024

\(\left(x+\dfrac{1}{3}\right)^2= \left(\dfrac{2}{3}\right)^6\)

\(\Rightarrow x+\dfrac{1}{9}=\dfrac{64}{729}\)

\(\Rightarrow x=\dfrac{64}{729}-\dfrac{1}{9}\)

\(\Rightarrow x=\dfrac{64}{729}-\dfrac{81}{729}\)

\(\Rightarrow x=-\dfrac{17}{729}\)

Vậy...

26 tháng 9 2024

\(\left(x+\dfrac{1}{3}\right)^3=\left(\dfrac{2}{3}\right)^6\\ \Rightarrow\left(x+\dfrac{1}{3}\right)^3=\left[\left(\dfrac{2}{3}\right)^2\right]^3\\ \Rightarrow\left(x+\dfrac{1}{3}\right)^3=\left(\dfrac{4}{9}\right)^3\\ \Rightarrow x+\dfrac{1}{3}=\dfrac{4}{9}\\ \Rightarrow x=\dfrac{4}{9}-\dfrac{1}{3}\\ \Rightarrow x=\dfrac{4}{9}-\dfrac{3}{9}\\ \Rightarrow x=\dfrac{1}{9}\)

26 tháng 9 2024

`((-27)^10 . 16^25)/(6^30 . (-32)^15)`
`= (3^30 . 2^100)/(2^30 . 3^30 . -2^75)`
`= (2^100)/(2^30 . -2^75)`
`= (2^70)/(-2^75)`
`= -2^145`

26 tháng 9 2024

A = \(\dfrac{\left(-27\right)^{10}.16^{25}}{6^{30}.\left(-32\right)^{15}}\)

A = \(\dfrac{\left(3^3\right)^{10}.\left(2^4\right)^{25}}{\left(2.3\right)^{30}.\left(-32\right)^{15}}\)

A = \(\dfrac{3^{30}.2^{100}}{2^{30}.3^{30}.\left(-2^5\right)^{15}}\)

A = \(\dfrac{3^{20}.2^{100}}{3^{30}[2^{30}.\left(-2\right)^{75}].}\)

A = \(-\dfrac{2^{100}}{\left[2^{30}.\left(2\right)^{75}\right]}\)

A = -2100 - 30 - 75

A = - 270-75

A = -2-5 

A = - \(\dfrac{1}{32}\)

26 tháng 9 2024

\(\in\) Z; b \(\in\) n*; n \(\in\) N* a < b

Ta có: \(\dfrac{a}{b}\) = 1 - \(\dfrac{b-a}{b}\)

           \(\dfrac{a+n}{b+n}\) = 1 - \(\dfrac{b-a}{b+n}\)

Vì b > a nên  b - a > 0, mà n; b \(\in\) N* nên

 \(\dfrac{b-a}{b}\) > 0; \(\dfrac{b-a}{b+n}\) > 0

⇒ \(\dfrac{b-a}{b}\) > \(\dfrac{b-a}{b+n}\)

⇒ \(\dfrac{a}{b}\) < \(\dfrac{a+n}{b+n}\)

 

26 tháng 9 2024

b; Vì a > b mà b \(\in\) N* nên a \(\in\) Z+

\(\dfrac{a}{b}\) = 1 + \(\dfrac{a-b}{b}\) 

\(\dfrac{a+n}{b+n}\) = 1 + \(\dfrac{a-b}{b+n}\)

Vì a > b mà a \(\in\) Z+ nên a - b > 0

Mặt khác: b; n \(\in\) N* nên \(\dfrac{a-b}{b}\)\(\dfrac{a-b}{b+n}\) > 0

⇒ \(\dfrac{a-b}{b}\) > \(\dfrac{a-b}{a+n}\) (hai phân số dương có cùng tử số, phân số nào có mẫu lớn hơn thì phân số đó nhỏ hơn và ngược lại)

⇒ \(\dfrac{a}{b}\) > \(\dfrac{a+n}{b+n}\) (Hai phân số phân số nào có phần hơn lớn hơn thì phân só đó lớn hơn)

a: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOy}< \widehat{xOz}\left(30^0< 100^0\right)\)

nên tia Oy nằm giữa hai tia Ox và Oz

=>\(\widehat{xOy}+\widehat{yOz}=\widehat{xOz}\)

=>\(\widehat{yOz}=100^0-30^0=70^0\)

Vì tia Ot nằm trong góc yOz

nên tia Ot nằm giữa hai tia Oy,Oz

=>\(\widehat{yOt}+\widehat{zOt}=\widehat{yOz}\)

=>\(\widehat{zOt}=70^0-20^0=50^0\)

Vì \(\widehat{yOt}< \widehat{zOt}\left(20^0< 50^0\right)\)

nên Ot không là phân giác của góc yOz

b: Vì \(\widehat{zOt}< \widehat{zOx}\left(50^0< 100^0\right)\)

nên tia Ot nằm giữa hai tia Oz và Ox

=>\(\widehat{tOz}+\widehat{tOx}=\widehat{xOz}\)

=>\(\widehat{xOt}=100^0-50^0=50^0\)

Ta có: tia Ot nằm giữa hai tia Ox và Oz

mà \(\widehat{xOt}=\widehat{zOt}\left(=50^0\right)\)

nên Ot là phân giác  của góc xOz

27 tháng 8 2024

skibidi nhes b

a: \(\left|x+\dfrac{1}{2}\right|>=0\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{1}{2}=0\)

=>\(x=-\dfrac{1}{2}\)

b: \(\left|x-\dfrac{1}{3}\right|>=0\forall x\)

=>\(\left|x-\dfrac{1}{3}\right|+2>=2\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{1}{3}=0\)

=>\(x=\dfrac{1}{3}\)

 

27 tháng 8 2024

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3\left(x-1\right)-4\left(y+3\right)+5\left(z-5\right)}{-3\cdot2-4\cdot4+5\cdot6}\\ =\dfrac{\left(5z-3x-4y\right)+\left(3-12-25\right)}{-6-16+30}=\dfrac{50-34}{8}=2\)

`=>(x-1)/2=2=>x-1=4=>x=5`

`=>(y+3)/4=2=>y+3=8=>y=5` 

`=>(z-5)/6=2=>z-5=12=>z=17` 

27 tháng 8 2024

"BSĐ: tìm nghiệm nguyên"

`x+2y+xy=5`

`=>x+y(x+2)=5`

`=>(x+2)+y(x+2)=5+2`

`=>(x+2)(y+1)=7`

Ta có bảng: 

x + 2                  1               7             -1              -7       
y + 1      7      1     -7     -1
x     -1      5    -3     -9
     6     0     -8     -2

Vậy: .. 

27 tháng 8 2024

nếu (x=1):[1+2y+1/cdot y=5] [1+2y+y=5] [1+3y=5] [3y=4] [y=\frac{4}{3}]

Vậy là (x=1) và (y=\frac{4}{3})

bạn xem có đúng ko nhé

NV
27 tháng 8 2024

\(2a-b=\dfrac{2}{3}\left(a+b\right)\)

\(3\left(2a-b\right)=2\left(a+b\right)\)

\(6a-3b=2a+2b\)

\(4a=5b\)

\(a=\dfrac{5}{4}b\)

Thay vào A ta được:

\(A=\dfrac{\left(\dfrac{5}{4}b\right)^4+5^4}{b^4+4^4}=\dfrac{\dfrac{5^4}{4^4}\left(b^4+4^4\right)}{b^4+4}=\dfrac{5^4}{4^4}\)