Cho các số thực không âm $a, b, c$ thỏa mãn: $a+b+c=2021$. Tìm giá trị lớn nhất và giả trị nhỏ nhất của biểu thức: $P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Thể tích của phần còn lại bằng thể tích của hình trụ tròn trừ đi thể tích của phần hình nón tiện.
V(hình trụ) = πr²h =π10²20= 2000π
V(nón) = 1/3 . πr²h(nón) =1/3 .π10². 10
V(cần tính) = V(hình trụ) - V(nón)
=2000π - 1000π/3
=5000π /3 (cm3)

Gọi chiều dài chiều rộng lần lượt là a ; b ( a > b > 0 )
Theo bài ra ta có hệ \(\left\{{}\begin{matrix}a-b=5\\ab=750\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b\left(b+5\right)=750\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=30\\\left[{}\begin{matrix}b=25\\b=-30\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\)

a, \(\left\{{}\begin{matrix}6x+2y=2\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1-3x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
b, đk a khác 0
Ta có (d) // (d') <=> \(\left\{{}\begin{matrix}a=2\\b\ne-1\end{matrix}\right.\)
=> (d) : y = 2x + b ( b khác -1 )
(d) đi qua M(2;-3) <=> -3 = 4 + b <=> b = -7
\(P=\sqrt{a+b}+\sqrt{b+c}\sqrt{c+a}\)
Aps dụng Bunhia-cốpxki : \(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=6\left(a+b+c\right)\)
\(=6.2021=12126\Leftrightarrow P=\sqrt{12126}\)
Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\dfrac{2021}{3}\)
(Refer ;-;)