Cho tam giác ABC có 3 góc nhọn, đường cao AH. I là một điểm nằm giữa A và H. Các tia BI, CI cắt cạnh AC, AB tương ứng tại M và N. Chứng minh HI là tia phân giác góc MHN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với k \(\le4\) => không có k thỏa mãn
Với k > 4 : P = 2k + 24 + 27
= 24(2k - 4 + 23 + 1)
= 24(2k - 4 + 9)
= 16(2k - 4 + 9)
P chính phương <=> 2k - 4 + 9 chính phương
đặt 2k - 4 + 9 = y2 (y \(\inℕ\))
<=> 2k - 4 = (y - 3)(y + 3) (*)
Đặt \(\left\{{}\begin{matrix}y-3=2^m\\y+3=2^n\end{matrix}\right.\left(m;n\inℕ\right)\Leftrightarrow2^n-2^m=6\)
<=> 2m(2n - m - 1) = 6
<=> \(\left\{{}\begin{matrix}2^m=2\\2^{n-m}-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\n=3\end{matrix}\right.\)
khi đó phương trình (*) <=> k - 4 = m + n
<=> k - 4 = 1 + 3
<=> k = 8
Biến đổi đến 6c -5a = b tách b trừ c bằng 5 lần c trừ a suy ra b trừ c chia hết cho 5,
b >6,a <c lần lượt thay b bằng 7, 8, 9 tìm được c bằng 2, 3, 4 và a băng 1,2,3
x2 - 3y2 + 2xy + 2x - 4y - 7 = 0
<=> 4.(x2 - 3y2 + 2xy + 2x - 4y - 7) = 0
<=> 4x2 - 12y2 + 8xy + 8x - 16y - 28 = 0
<=> (4x2 + 8xy + 4y2) + (8x + 8y) + 4 - 16y2 - 24y - 32 = 0
<=> (2x + 2y)2 + 4(2x + 2y) + 4 - (16y2 + 24y + 9) = 23
<=> (2x + 2y + 2)2 - (4y + 3)2 = 23
<=> (2x + 6y + 5)(2x - 2y - 1) = 23
Vì \(x;y\inℤ\Rightarrow2x+6y+5;2x-2y-1\inℤ\)
Lập bảng :
2x + 6y + 5 | 1 | 23 | -1 | -23 |
2x - 2y - 1 | 23 | 1 | -23 | -1 |
x | 17/2(loại) | 3 | -9 | -7/2(loại) |
y | 2 | 2 |
Vậy (x;y) = (3;2) ; (-9;2)
\(\left(x-2\right)^3\)+\(\left(x+1\right)^3\)+\(\left(1-2x\right)^3\) = 0
\(x^3-6x^2+12x-8+x^3+3x^2+3x+1+1-6x+12x^2-8x^3\text{=}0\)
\(-6x^3+9x^2+9x-6\text{=}0\)
\(\left(-6x^3-6\right).\left(9x^2+9x\right)\text{=}0\)
\(6\left(-x^2-1\right)+9x\left(x+1\right)\text{=}0\)
\(6\left(x-1\right)\left(x+1\right)+9x\left(x+1\right)\text{=}0\)
\([6(x-1)+9x].\left(x+1\right)\text{=}0\)
\(\left(6x-6+9x\right).\left(x+1\right)\text{=}0\)
\(\left(15x-6\right)\left(x+1\right)\text{=}0\)
\(TH1:15x-6\text{=}0\)
\(15x\text{=}6\)
\(x\text{=}\dfrac{2}{5}\)
\(TH2:x+1\text{=}0\)
\(x\text{=}-1\)
Vậy phương trình một ẩn x có tập nghiệm S \(\in(\dfrac{2}{5};-1)\)
bạn mở rộng, bỏ ngoặc, rút gọn có đa thức 6x3 . ... Đa thức này có nghiệm là - 1, nhẩm ra , bạn chia đa thức 6 x3 .... với (x + 1)