K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2023

\(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)

\(\Leftrightarrow\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}-10=0\)

\(\Leftrightarrow(\dfrac{x-241}{17}-1)+(\dfrac{x-220}{19}-2)+(\dfrac{x-195}{21}-3)+(\dfrac{x-166}{23}-4)=0\)

\(\Leftrightarrow\dfrac{x-258}{17}+\dfrac{x-258}{19}+\dfrac{x-258}{21}+\dfrac{x-258}{23}=0\)

\(\Leftrightarrow\left(x-258\right)\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\right)=0\)

\(Do\) \(\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\right)\ne0\) \(nên\) \(để\) \(gt=0\)

\(\Leftrightarrow x-258=0\)

\(\Leftrightarrow x=258\)

\(Vậy...\)

29 tháng 1 2023

\(a.\) \(ax^2-a^2x-x+a\)

\(=\left(ax^2-a^2x\right)-\left(x-a\right)\)

\(=ax\left(x-a\right)-\left(x-a\right)\)

\(=\left(ax-1\right)\left(x-a\right)\)

\(b.\) \(18x^3-12x^2+2x\)

\(=2x\left(9x^2-6x+1\right)\)

\(=2x\left(3x-1\right)^2\)

\(c.\) \(x^3-5x^2-4x+20\)

\(=\left(x^3-5x^2\right)-\left(4x-20\right)\)

\(=x^2\left(x-5\right)-4\left(x-5\right)\)

\(=\left(x^2-4\right)\left(x-5\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x-5\right)\)

\(d.\) \(\left(x+7\right)\left(x+15\right)+15\)

\(=x^2+15x+7x+105+15\)

\(=x^2+22x+120\)

\(=\left(x+10\right)\left(x+12\right)\)

29 tháng 1 2023

loading...  

28 tháng 1 2023

\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(A=\dfrac{a^2bc}{ab+a^2bc+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)

\(A=\dfrac{a^2bc}{ab\left(1+ac+c\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)

\(A=\dfrac{ac+1+c}{ac+c+1}\)

\(A=1\)

 

28 tháng 1 2023

\(A=\dfrac{ab}{ab+a+1}+\dfrac{bc}{bc+b+1}+\dfrac{ca}{ca+c+1}\)

\(A=\dfrac{abc}{abc+ac+c}+\dfrac{bc}{bc+b+abc}+\dfrac{ca}{ca+c+1}\)

\(A=\dfrac{1}{1+ac+c}+\dfrac{c}{c+1+ac}+\dfrac{ca}{ca+c+1}\)

\(A=1\)

28 tháng 1 2023

Thấy \(x=0\) không phải là nghiệm của pt : Chia hai vế cho \(x^2\) ta được :

\(\Leftrightarrow x^2+3x+4+\dfrac{3}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+3\left(x+\dfrac{1}{x}\right)+4=0\)

\(Đặt\) : \(x+\dfrac{1}{x}\) \(=t\) , thay vào pt ta được :

\(\Leftrightarrow t^2-2+3t+4=0\)

\(\Leftrightarrow\left(t+1\right)\left(t+2\right)=0\)

\(TH1:\) \(\Leftrightarrow x+\dfrac{1}{x}+1=0\)

\(\dfrac{x^2+1+x}{x}=0\)

hình như sai thì phải á bạn

\(TH2:\) \(x+\dfrac{1}{x}+2=0\)

\(x^2+2x+1=0\)

\(\Rightarrow x=-1\)

\(Vậy...\)

mong các anh chị lớp trên xem hộ em bài này với ạ chứ em cũng mới chỉ  có lớp 8 thôi ạ

 

28 tháng 1 2023

\(Từ\) \(giả\) \(thiết\) : \(4a^2+b^2=\text{5}ab\)

\(\Leftrightarrow4a^2-4ab-ab+b^2\)

\(\Leftrightarrow\left(4a-b\right)\left(a-b\right)=0\)

\(TH1:\) \(4a-b=0\) \((\) \(mẫu\) \(thuẫn\) \(với\) \(2a>b\) \()\)

\(TH2:\) \(a-b=0\)

\(\Rightarrow a=b\)

\(\Rightarrow A=\dfrac{a^2}{4a^2-a^2}\)

\(\Rightarrow A=\dfrac{1}{3}\)

28 tháng 1 2023

`A=[4x^4+1]/[2x^2-2x+1]`

`A=[4x^4+4x^2+1-4x^2]/[2x^2-2x+1]`

`A=[(2x^2+1)^2-4x^2]/[2x^2-2x+1]`

`A=[(2x^2-2x+1)(2x^2+2x+1)]/[2x^2-2x+1]`

`A=2x^2+2x+1`

27 tháng 1 2023

\(=8x^3-4x^2y-4x^2+2xy-2xy^2+y^3\)

27 tháng 1 2023

a) Áp dụng định lý Thales trong tam giác ABC, ta có:

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) . Kết hợp với giả thiết ta được \(\dfrac{2}{5}=\dfrac{AE}{7,5}\) \(\Rightarrow AE=3\)

b) Ta thấy \(\dfrac{AE}{AC}=\dfrac{3}{7,5}=\dfrac{2}{5}\) nhưng \(\dfrac{BF}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\ne\dfrac{AE}{AC}\) nên theo định lý Thales đảo, ta không thể có EF//AB.