cho a,b là các số nguyên dương thỏa mãn a2-ab+3/2b2 chia hết cho 25. Chứng minh rằng cả a và b đều chia hết cho 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi CD là x và CR là y ( bài toán tổng - hiệu lp 4 nhe 😆 .... )
x=92+24 /2 = 58
y= 34
=> s hcn = 1972 cm ^2
Chiều dài của hình chữ nhật là
( 92 + 24 ) : 2 = 58 ( cm )
Chiều rộng của hình chữ nhật là
92 - 58 = 34 ( cm )
Diện tích của hình chữ nhật là
58 x 34 = 1972 ( cm2 )
Đáp số : 1972 cm2
\(x^6-6x^5+15x^4-20x^3+15x^2-6x+1=0\)
\(\Leftrightarrow x^6-x^5-5x^5+5x^4+10x^4-10x^3-10x^3+10x^2+5x^2-5x-x+1=0\)
\(\Leftrightarrow x^5\left(x-1\right)-5x^4\left(x-1\right)+10x^3\left(x-1\right)-10x^2\left(x-1\right)+5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^5-5x^4+10x^3-10x^2+5x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^5-x^4-4x^4+4x^3+6x^3-6x^2-4x^2+4x+x-1\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^4\left(x-1\right)-4x^3\left(x-1\right)+6x^2\left(x-1\right)-4x\left(x-1\right)+x-1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[x^4-4x^3+6x^2-4x+1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[x^4-x^3-3x^3+3x^2+3x^2-3x-x+1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^3\left[x^3-3x^2+3x-1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^3\left[x^3-x^2-2x^2+2x+x-1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^4\left[x^2-2x+1\right]=0\Leftrightarrow\left(x-1\right)^6=0\Leftrightarrow x=1\)
Áp dụng hệ thức vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=m-1\end{matrix}\right.\)
Ta có:
\(x_1^2+x^2_2=30\)
\(\left(x_1+x_2\right)^2-2x_1.x_2=30\)
\(4^2-2\left(m-1\right)=30\)
\(2m-2=-14\)
\(m=-6\)
Để phương trình đã cho có hai nghiệm \(x_1,x_2\) thì
\(\Delta'>0\Leftrightarrow2^2-\left(m-1\right)=5-m>0\Leftrightarrow m< 5\)
Khi \(m< 5\) phương trình đã cho có hai nghiệm \(x_1,x_2\).
Theo định lí Viete ta có:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
Ta có:
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(m-1\right)=18-2m=30\)
\(\Leftrightarrow m=-6\) (thỏa mãn)
A B C D H E O
a/ Nối A với D ta có
\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp BC\)
=> H và D cùng nhìn AC dưới 1 góc vuông => AHDC là tứ giác nội tiếp
b/
Xét tg vuông ACO có
\(\widehat{ACO}+\widehat{AOC}=90^o\)
Ta có \(\widehat{ADH}+\widehat{EDB}=\widehat{ADB}=90^o\)
Xét tứ giác nội tiếp AHDC có
\(\widehat{ACO}=\widehat{ADH}\) (Góc nội tiếp cùng chắn cung AH)
\(\Rightarrow\widehat{AOC}=\widehat{EDB}\)
Xét tam giác EOH và tg EBD có
\(\widehat{BED}\) chung
\(\widehat{AOC}=\widehat{EDB}\)
=> tg EOH đồng dạng với tg EDB (g.g.g)
\(\Rightarrow\dfrac{EH}{EB}=\dfrac{EO}{ED}\Rightarrow EH.ED=EO.EB\)
a) Ta có \(\widehat{ADB}=90^0\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{ADC}=90^0\)
Tứ giác \(AHDC\) có: \(\widehat{ADC}=\widehat{AHC}=90^0\) mà 2 góc này nội tiếp và chắn cung AC
\(\Rightarrow AHDC\) là tứ giác nội tiếp
b) Tứ giác \(AHDC\) nội tiếp \(\Rightarrow\widehat{ACO}=\widehat{ADE}\) (góc nội tiếp cùng chắn 1 cung)
Ta có: \(\widehat{EOH}=90^0-\widehat{ACO}=90^0-\widehat{ADE}=\widehat{EDB}\)
Xét \(\Delta EOH\) và \(\Delta EDB\) có:
\(\widehat{BED}\) chung
\(\widehat{EOH}=\widehat{EDB}\) (đã chứng minh)
\(\Rightarrow\Delta EOH\sim\Delta EDB\) (g.g) \(\Rightarrow\dfrac{EO}{EH}=\dfrac{ED}{EB}\Rightarrow EH.ED=EO.EB\)
360/X + 180/X + 5 = 30/60
=> 2.180/X + 180/X + 5 = 1/2
=> 3.180/X = 1/2 -5 =-9/2
=> 540/X = -9/2
=> X = -540.2/9
=> X = -120
Điểm A có tung độ là 8 khi đó y =8
=> 2X^2 = 8
=> X^2 = 4
=> X1= 2, X2 = -2
Tọa độ của A có thể là (2;8) hoặc (-2;8)
* Tung độ là 8 ⇒ y = 8
⇒ \(2x^2\) = 8
⇔ \(x^2\) = 4
⇔ \(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy tọa độ điểm A là ( 0 ; 2 ) và ( 0 ; -2 )