Cho tam giác ABC vuông cân tại A, AC = 4cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là chân đường vuông góc kẻ từ M đến AB, AC. Tìm giá trị lớn nhất của diện tích hình chữ nhật ADME khi m thay đổi trên BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(11^{20}+11^{21}=11^{20}\left(11+1\right)=11^{20}\cdot12=11^{20}\cdot2\cdot6⋮6\)
b: \(3^{30}+3^{29}+3^{28}=3^{28}\left(3^2+3+1\right)=3^{28}\cdot13⋮13\)
c: \(5+5^2+5^3+...+5^{96}\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{95}\left(1+5\right)\)
\(=6\left(5+5^3+...+5^{95}\right)⋮6\)
d: \(5+5^2+5^3+...+5^{94}+5^{95}+5^{96}\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{94}\left(1+5+5^2\right)\)
\(=31\left(5+5^4+...+5^{94}\right)⋮31\)
e: \(5+5^2+5^3+5^4+...+5^{96}\)
\(=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)+...+5^{93}\left(1+5+5^2+5^3\right)\)
\(=156\left(5+5^5+...+5^{93}\right)⋮13\)
cho,a≠b≠c (a+b+c)2=a2+b2+c2
c/m \(\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\)=1
từ (a+b+c)^2=a^2+b^2+c^2
suy ra ab+bc+ac=0suy ra ab=-(bc+ac);ac=-(ab+bc);bc=-(ab+ac)
xét a^2+2bc=a^2+bc-ab-ac=(a-c)(a-b)
tương tự dc b^2+2ac=(b-a)(b-c)
c^2+2ab=(a-c)(b-c)
thay vao điều phải c/m dc
a^2/(a-c)(a-b) -b^2/(a-b)(b-c) +c^2(a-c)(b-c)
=a^2b-a^2c-b^2a+b^2c+c^2a-bc^2/(a-b)(a-c)(b-c)
=abc(ac-bc+bc-ab+ab-ac)/(a-b)(a-c)(b-c)=0
Diện tích phần tam giác tăng thêm là:
`108 : 2 = 54 (cm^2)`
Chiều rộng của hình chữ nhật ABCD là:
`54 . 2 : 3 = 36 (cm)`
Tổng chiều dài và rộng của hình chữ nhật ABCD là:
`162 : 2 = 81 (cm)`
Chiều dài của hình chữ nhật ABCD là:
`81 - 36 = 45 (cm)`
Diện tích hình chữ nhật ABCD là:
`45 . 36 = 1620 (cm^2)`
Diện tích hình thang là:
`1620 + 108 = 1728 (cm^2)`
Đáp số: `1728 cm^2`
------------------------------------
-> Bạn có thể tính đáy lớn, đáy bé hình thang sau tính diện tích hình thang cũng được nhé:
- Công thức S hình tháng: (Đáy lớn + Đáy bé) . Chiều cao : 2
Với:
Đáy lớn `= 45 + 3 + 3 = 51 (cm)`
Đáy bé `= 45cm`
Chiều cao `= 36cm`
`=> S = (51 + 45) . 36 : 2 = 1728 (cm^2)`
Ta có: a chia cho 24 được số dư là 10 và thương là k nên:
a = 24k + 10 (k ∈ N)
Vì 24 ⋮ 2 và 10 ⋮ 2 nên (24k + 10) ⋮ 2
Vì 24 ⋮ 4 và 10 không chia hết cho 4 nên (24k + 10) không chia hết cho 4
Vì a : 24 dư 10 , thương gọi là k ( k ∈ N)
A=24 x k +10
Vì 24 ⋮2 và 10 cũng ⋮ 2 nên a ⋮2
Tương tụ , 24 ⋮4 và 10 ko chia hết cho 4 nên a ko chia hết cho 4
\(a.\left(\dfrac{-1}{2}\right)^2\cdot\left(\dfrac{2}{5}\right)^2 \\ =\left(\dfrac{-1}{2}\cdot\dfrac{2}{5}\right)^2\\ =\left(\dfrac{-1}{5}\right)^2\\ =\dfrac{1}{25}\\ b.\left(\dfrac{1}{9}\right)^2:\left(\dfrac{1}{3}\right)^3\\ =\left[\left(\dfrac{1}{3}\right)^2\right]^2:\left(\dfrac{1}{3}\right)^3\\ =\left(\dfrac{1}{3}\right)^4:\left(\dfrac{1}{3}\right)^3\\ =\dfrac{1}{3}\\ c.\left(\dfrac{-1}{2}\right)^3\cdot\left(\dfrac{3}{2}\right)^3\\ =\left(\dfrac{-1}{2}\cdot\dfrac{3}{2}\right)^3\\ =\left(\dfrac{-3}{4}\right)^3\\ =\dfrac{-27}{64}\)
A B C D E M
Hướng giải:
Dễ dàng chứng minh được ADME là hình chữ nhật => DM=AE
Dễ dàng chứng minh được tg EMC cân tại E => EM=EC
=> DM+EM=AE+EC=AC=4 cm không đổi
\(S_{ADME}=EM.DM\)
Hai số coa tổng không đổi thì tích của chúng lớn nhất khi 2 số bằng nhau => \(S_{ADME}\) lớn nhất khi EM=DM
Khi đó sẽ c/m được M là trung điểm của BC