Một số tự nhiên có 2017 chữ số. Chữ số tận cùng là 1. Cứ hai chữ số liền nhau thì tạo thành số chia hết cho 17 hoặc 23. Hỏi chữ số đầu tiên của số đó là bao nhiêu?
Giúp mik vs ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5^4.18^4}{125.9^5.16}\\ =\dfrac{5^4.\left(2.3^2\right)^4}{5^3.\left(3^2\right)^5.2^4}\\ =\dfrac{5^4.2^4.3^8}{5^3.2^4.3^{10}}\\ =\dfrac{5}{3^2}\\ =\dfrac{5}{9}\)
Đáp án
Câu 1 : Chọn D
Câu 2 : Chọn D
Câu 3 : Chọn A
Câu 4 : Chọn A
@ChiDung
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{\dfrac{1}{4};1\right\}\end{matrix}\right.\)
\(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{2x\sqrt{x}+x-\sqrt{x}-\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{2x\sqrt{x}+x-\sqrt{x}-x\sqrt{x}-x-\sqrt[]{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{x\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(\dfrac{x-1}{2x+\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}\)
\(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right)\cdot\dfrac{x-1}{2x+\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(x-2\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt[]{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(x-2\right)}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)
Xét tứ giác HMIK có \(\widehat{H}+\widehat{M}+\widehat{I}+\widehat{K}=360^0\)
=>\(3x+4x+2x+x=360\)
=>\(10x=360^0\)
=>\(x=36^0\)
=>\(\widehat{H}=3\cdot36^0=108^0;\widehat{M}=4\cdot36^0=144^0;\widehat{I}=2\cdot36^0=72^0;\widehat{K}=36^0\)
Vì \(\widehat{H}+\widehat{I}=180^0\)
nên HM//IK
=>HMIK là hình thang
\(\dfrac{11}{5}-\left(0,35+x\right)=1\dfrac{1}{2}\\ \dfrac{11}{5}-\left(\dfrac{7}{20}+x\right)=\dfrac{3}{2}\\ \dfrac{11}{5}-\dfrac{7}{20}-x=\dfrac{3}{2}\\ \dfrac{44}{20}-\dfrac{7}{20}-x=\dfrac{3}{2}\\ \dfrac{37}{20}-x=\dfrac{3}{2}\\ x=\dfrac{37}{20}-\dfrac{3}{2}\\ x=\dfrac{7}{20}\)
Nếu \(a< b\) và \(b< c\) thì \(a< c\) (theo tính chất bắc cầu)
1: \(2^3\cdot2^2\cdot2^4=2^{3+2+4}=2^9\)
2: \(2^3\cdot2\cdot2^5=2^{3+1+5}=2^9\)
3: \(10^2\cdot10^3\cdot10^5=10^{2+3+5}=10^{10}\)
4: \(x\cdot x^5=x^{1+5}=x^6\)
5: \(a^3\cdot a^2\cdot a^5=a^{3+2+5}=a^{10}\)
6: \(x^5\cdot x^4\cdot x\cdot x^7\cdot x^6=x^{5+4+1+7+6}=x^{23}\)
7: \(10\cdot10^2=10^{1+2}=10^3\)
8: \(10\cdot100\cdot10^3=10\cdot10^2\cdot10^3=10^6\)
9: \(10\cdot100\cdot10^4\cdot1000=10\cdot10^2\cdot10^4\cdot10^3=10^{10}\)
10: \(5^3:5^2=5^{3-2}=5^1\)
11: \(3^3:3^3=3^{3-3}=3^0\)
12: \(2^7:2^3=2^{7-3}=2^4\)
13: \(4^8:4^4=4^{8-4}=4^4\)
14: \(9^5:9^2=9^{5-2}=9^3\)
15: \(8^9:8^7=8^{9-7}=8^2\)
16: \(a^6:a^3=a^{6-3}=a^3\)
17: \(b^9:b^4=b^{9-4}=b^5\)
khai triển đa thức ta đc:
=x2-4x+4+x2+4x+4+x3+9x2+27x+27+27x3+27x2+9x+1
=28x3+36x2+36x+36
Vậy hệ số của x2 sau khi khai triển là 36
1 hoặc 2